Impaired polyamine metabolism causes behavioral and neuroanatomical defects in a mouse model of Snyder-Robinson syndrome.

IF 4 3区 医学 Q2 CELL BIOLOGY Disease Models & Mechanisms Pub Date : 2024-06-01 Epub Date: 2024-05-09 DOI:10.1242/dmm.050639
Oluwaseun Akinyele, Anushe Munir, Marie A Johnson, Megan S Perez, Yuan Gao, Jackson R Foley, Ashley Nwafor, Yijen Wu, Tracy Murray-Stewart, Robert A Casero, Hülya Bayir, Dwi U Kemaladewi
{"title":"Impaired polyamine metabolism causes behavioral and neuroanatomical defects in a mouse model of Snyder-Robinson syndrome.","authors":"Oluwaseun Akinyele, Anushe Munir, Marie A Johnson, Megan S Perez, Yuan Gao, Jackson R Foley, Ashley Nwafor, Yijen Wu, Tracy Murray-Stewart, Robert A Casero, Hülya Bayir, Dwi U Kemaladewi","doi":"10.1242/dmm.050639","DOIUrl":null,"url":null,"abstract":"<p><p>Snyder-Robinson syndrome (SRS) is a rare X-linked recessive disorder caused by a mutation in the SMS gene, which encodes spermine synthase, and aberrant polyamine metabolism. SRS is characterized by intellectual disability, thin habitus, seizure, low muscle tone/hypotonia and osteoporosis. Progress towards understanding and treating SRS requires a model that recapitulates human gene variants and disease presentations. Here, we evaluated molecular and neurological presentations in the G56S mouse model, which carries a missense mutation in the Sms gene. The lack of SMS protein in the G56S mice resulted in increased spermidine/spermine ratio, failure to thrive, short stature and reduced bone density. They showed impaired learning capacity, increased anxiety, reduced mobility and heightened fear responses, accompanied by reduced total and regional brain volumes. Furthermore, impaired mitochondrial oxidative phosphorylation was evident in G56S cerebral cortex, G56S fibroblasts and Sms-null hippocampal cells, indicating that SMS may serve as a future therapeutic target. Collectively, our study establishes the suitability of the G56S mice as a preclinical model for SRS and provides a set of molecular and functional outcome measures that can be used to evaluate therapeutic interventions for SRS.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11103582/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.050639","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Snyder-Robinson syndrome (SRS) is a rare X-linked recessive disorder caused by a mutation in the SMS gene, which encodes spermine synthase, and aberrant polyamine metabolism. SRS is characterized by intellectual disability, thin habitus, seizure, low muscle tone/hypotonia and osteoporosis. Progress towards understanding and treating SRS requires a model that recapitulates human gene variants and disease presentations. Here, we evaluated molecular and neurological presentations in the G56S mouse model, which carries a missense mutation in the Sms gene. The lack of SMS protein in the G56S mice resulted in increased spermidine/spermine ratio, failure to thrive, short stature and reduced bone density. They showed impaired learning capacity, increased anxiety, reduced mobility and heightened fear responses, accompanied by reduced total and regional brain volumes. Furthermore, impaired mitochondrial oxidative phosphorylation was evident in G56S cerebral cortex, G56S fibroblasts and Sms-null hippocampal cells, indicating that SMS may serve as a future therapeutic target. Collectively, our study establishes the suitability of the G56S mice as a preclinical model for SRS and provides a set of molecular and functional outcome measures that can be used to evaluate therapeutic interventions for SRS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多胺代谢受损会导致斯奈德-罗宾逊综合征小鼠模型出现行为和神经解剖学缺陷。
斯奈德-罗宾逊综合征(SRS)是一种罕见的 X 连锁隐性遗传病,由编码精胺合成酶的 SMS 基因突变和多胺代谢异常引起。SRS 的特征是智力残疾、体型消瘦、癫痫发作、肌肉张力低/肌张力低下和骨质疏松症。要想在了解和治疗 SRS 方面取得进展,就必须建立一个能再现人类突变和疾病表现的模型。在这里,我们评估了携带 Sms 基因错义突变的 G56S 小鼠模型的分子和神经表现。G56S 小鼠体内缺乏 SMS 蛋白会导致精胺/精胺比值升高、无法茁壮成长、身材矮小和骨密度降低。小鼠的学习能力受损、焦虑增加、活动能力下降、恐惧反应增强,同时总脑容量和区域脑容量减少。此外,G56S大脑皮层、G56S成纤维细胞和Sms-null海马细胞的线粒体氧化磷酸化明显受损,这可能是未来的治疗靶点。总之,我们的研究确立了 G56S 小鼠作为 SRS 临床前模型的适用性,并提供了一套分子和功能结果测量指标,可用于评估 SRS 的治疗干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Disease Models & Mechanisms
Disease Models & Mechanisms 医学-病理学
CiteScore
6.60
自引率
7.00%
发文量
203
审稿时长
6-12 weeks
期刊介绍: Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.
期刊最新文献
A frameshift mutation in the murine Prkra gene exhibits cerebellar abnormality and reduced eIF2α phosphorylation. Slc26a2-mediated sulfate metabolism is significant for the tooth development. Modelling quiescence exit of neural stem cells reveals a FOXG1-FoxO6 axis. The role of mesenchymal cells in cholangiocarcinoma. Hippo cooperates with p53 to regulate lung airway mucous cell metaplasia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1