首页 > 最新文献

Disease Models & Mechanisms最新文献

英文 中文
eEF1α2 is required for actin cytoskeleton homeostasis in the aging muscle. eEF1α2 是老化肌肉肌动蛋白细胞骨架平衡所必需的。
IF 4 3区 医学 Q2 CELL BIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-08-29 DOI: 10.1242/dmm.050729
Hidetaka Katow, Hyung Don Ryoo

The translation elongation factor eEF1α (eukaryotic elongation factor 1α) mediates mRNA translation by delivering aminoacyl-tRNAs to ribosomes. eEF1α also has other reported roles, including the regulation of actin dynamics. However, these distinct roles of eEF1α are often challenging to uncouple and remain poorly understood in aging metazoan tissues. The genomes of mammals and Drosophila encode two eEF1α paralogs, with eEF1α1 expressed ubiquitously and eEF1α2 expression more limited to neurons and muscle cells. Here, we report that eEF1α2 plays a unique role in maintaining myofibril homeostasis during aging in Drosophila. Specifically, we generated an eEF1α2 null allele, which was viable and showed two distinct muscle phenotypes. In young flies, the mutants had thinner myofibrils in indirect flight muscles that could be rescued by expressing eEF1α1. With aging, the muscles of the mutant flies began showing abnormal distribution of actin and myosin in muscles, but without a change in actin and myosin protein levels. This age-related phenotype could not be rescued by eEF1α1 overexpression. These findings support an unconventional role of Drosophila eEF1α2 in age-related homeostasis of muscle myofibers.

翻译延伸因子 eEF1α(真核生物延伸因子 1α)通过将氨基酰-tRNA 运送到核糖体来介导 mRNA 翻译。然而,eEF1α的这些不同作用往往难以区分,而且在衰老的后生动物组织中仍鲜为人知。哺乳动物和果蝇的基因组编码了两种 eEF1α 对映体,其中 eEF1α1 广泛表达,而 eEF1α2 则仅限于神经元和肌肉细胞表达。在这里,我们报告了 eEF1α2 在果蝇衰老过程中维持肌原纤维稳态的独特作用。具体来说,我们产生了一个eEF1α2等位基因,该等位基因具有存活能力,并表现出两种不同的肌肉表型。在幼年果蝇中,突变体的间接飞行肌肉肌原纤维较细,但可以通过表达eEF1α1来挽救。随着年龄的增长,突变体苍蝇的肌肉中肌动蛋白和肌球蛋白的分布开始出现异常,但肌动蛋白和肌球蛋白的水平没有变化。eEF1α1的过表达并不能挽救这种与年龄相关的表型。这些发现支持果蝇eEF1α2在肌肉肌纤维与年龄相关的平衡中发挥非常规作用。
{"title":"eEF1α2 is required for actin cytoskeleton homeostasis in the aging muscle.","authors":"Hidetaka Katow, Hyung Don Ryoo","doi":"10.1242/dmm.050729","DOIUrl":"https://doi.org/10.1242/dmm.050729","url":null,"abstract":"<p><p>The translation elongation factor eEF1α (eukaryotic elongation factor 1α) mediates mRNA translation by delivering aminoacyl-tRNAs to ribosomes. eEF1α also has other reported roles, including the regulation of actin dynamics. However, these distinct roles of eEF1α are often challenging to uncouple and remain poorly understood in aging metazoan tissues. The genomes of mammals and Drosophila encode two eEF1α paralogs, with eEF1α1 expressed ubiquitously and eEF1α2 expression more limited to neurons and muscle cells. Here, we report that eEF1α2 plays a unique role in maintaining myofibril homeostasis during aging in Drosophila. Specifically, we generated an eEF1α2 null allele, which was viable and showed two distinct muscle phenotypes. In young flies, the mutants had thinner myofibrils in indirect flight muscles that could be rescued by expressing eEF1α1. With aging, the muscles of the mutant flies began showing abnormal distribution of actin and myosin in muscles, but without a change in actin and myosin protein levels. This age-related phenotype could not be rescued by eEF1α1 overexpression. These findings support an unconventional role of Drosophila eEF1α2 in age-related homeostasis of muscle myofibers.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The highly metastatic 4T1 breast carcinoma model possesses features of a hybrid epithelial/mesenchymal phenotype. 高度转移的 4T1 乳腺癌模型具有上皮-间充质混合表型的特征。
IF 4 3区 医学 Q2 CELL BIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-09-04 DOI: 10.1242/dmm.050771
Mary E Herndon, Mitchell Ayers, Katherine N Gibson-Corley, Michael K Wendt, Lori L Wallrath, Michael D Henry, Christopher S Stipp

Epithelial-mesenchymal transitions (EMTs) are thought to promote metastasis via downregulation of E-cadherin (also known as Cdh1) and upregulation of mesenchymal markers such as N-cadherin (Cdh2) and vimentin (Vim). Contrary to this, E-cadherin is retained in many invasive carcinomas and promotes collective cell invasion. To investigate how E-cadherin regulates metastasis, we examined the highly metastatic, E-cadherin-positive murine 4T1 breast cancer model, together with the less metastatic, 4T1-related cell lines 4T07, 168FARN and 67NR. We found that 4T1 cells display a hybrid epithelial/mesenchymal phenotype with co-expression of epithelial and mesenchymal markers, whereas 4T07, 168FARN, and 67NR cells display progressively more mesenchymal phenotypes in vitro that relate inversely to their metastatic capacity in vivo. Using RNA interference and constitutive expression, we demonstrate that the expression level of E-cadherin does not determine 4T1 or 4T07 cell metastatic capacity in mice. Mechanistically, 4T1 cells possess highly dynamic, unstable cell-cell junctions and can undergo collective invasion without E-cadherin downregulation. However, 4T1 orthotopic tumors in vivo also contain subregions of EMT-like loss of E-cadherin. Thus, 4T1 cells function as a model for carcinomas with a hybrid epithelial/mesenchymal phenotype that promotes invasion and metastasis.

上皮-间质转换(EMT)被认为是通过下调 E-粘连蛋白和上调间质标记(如 N-粘连蛋白和波形蛋白)来促进转移的。与此相反,E-cadherin 在许多侵袭性癌中得以保留,并促进了细胞的集体侵袭。为了研究 E-cadherin如何调控转移,我们研究了高转移性、E-cadherin 阳性的小鼠 4T1 乳腺癌模型,以及转移性较低、与 4T1 相关的细胞系 4T07、168FARN 和 67NR。我们发现 4T1 细胞显示出混合-E/M 表型,同时表达上皮和间质标记,而 4T07、168FARN 和 67NR 在体外显示出逐渐增多的间质表型,这与其体内转移能力成反比。我们利用 RNA 干扰和组成型表达证明,E-cadherin 的表达水平并不能决定 4T1 或 4T07 细胞在小鼠体内的转移能力。从机理上讲,4T1 细胞具有高度动态、不稳定的细胞-细胞连接,可以在不下调 E-cadherin 的情况下发生集体侵袭。然而,体内的 4T1 正位肿瘤也包含类似 EMT 的 E-cadherin 缺失亚区。因此,4T1细胞可作为具有促进侵袭和转移的混合E/M表型的癌症模型。
{"title":"The highly metastatic 4T1 breast carcinoma model possesses features of a hybrid epithelial/mesenchymal phenotype.","authors":"Mary E Herndon, Mitchell Ayers, Katherine N Gibson-Corley, Michael K Wendt, Lori L Wallrath, Michael D Henry, Christopher S Stipp","doi":"10.1242/dmm.050771","DOIUrl":"10.1242/dmm.050771","url":null,"abstract":"<p><p>Epithelial-mesenchymal transitions (EMTs) are thought to promote metastasis via downregulation of E-cadherin (also known as Cdh1) and upregulation of mesenchymal markers such as N-cadherin (Cdh2) and vimentin (Vim). Contrary to this, E-cadherin is retained in many invasive carcinomas and promotes collective cell invasion. To investigate how E-cadherin regulates metastasis, we examined the highly metastatic, E-cadherin-positive murine 4T1 breast cancer model, together with the less metastatic, 4T1-related cell lines 4T07, 168FARN and 67NR. We found that 4T1 cells display a hybrid epithelial/mesenchymal phenotype with co-expression of epithelial and mesenchymal markers, whereas 4T07, 168FARN, and 67NR cells display progressively more mesenchymal phenotypes in vitro that relate inversely to their metastatic capacity in vivo. Using RNA interference and constitutive expression, we demonstrate that the expression level of E-cadherin does not determine 4T1 or 4T07 cell metastatic capacity in mice. Mechanistically, 4T1 cells possess highly dynamic, unstable cell-cell junctions and can undergo collective invasion without E-cadherin downregulation. However, 4T1 orthotopic tumors in vivo also contain subregions of EMT-like loss of E-cadherin. Thus, 4T1 cells function as a model for carcinomas with a hybrid epithelial/mesenchymal phenotype that promotes invasion and metastasis.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Axolotl mandible regeneration occurs through mechanical gap closure and a shared regenerative program with the limb. Axolotl 下颌骨的再生是通过机械缝隙闭合和与肢体共享再生程序实现的。
IF 4 3区 医学 Q2 CELL BIOLOGY Pub Date : 2024-08-29 DOI: 10.1242/dmm.050743
Julia Kramer, Rita Aires, Sean D Keeley, Tom Alexander Schröder, Günter Lauer, Tatiana Sandoval-Guzmán

The mandible plays an essential part in human life and, thus, defects in this structure can dramatically impair the quality of life in patients. Axolotls, unlike humans, are capable of regenerating their lower jaws; however, the underlying mechanisms and their similarity to those in limb regeneration are unknown. In this work, we used morphological, histological, and transcriptomic approaches to analyze the regeneration of lateral resection defects in the axolotl mandible. We found that this structure can regenerate all missing tissues in 90 days through gap minimization, blastema formation, and finally tissue growth, differentiation, and integration. Moreover, transcriptomic comparisons of regenerating mandibles and limbs showed that they share molecular phases of regeneration, that these similarities peak during blastema stages, and that mandible regeneration occurs at a slower pacing. Altogether, our study demonstrates the existence of a shared regenerative program used in two different regenerating body structures with different embryonic origins in the axolotl, and contributes to our understanding of the minimum requirements for a successful regeneration in vertebrates, bringing us closer to understand similar lesions in human mandibles.

下颌骨在人类生活中起着至关重要的作用,因此,这一结构的缺陷会严重影响患者的生活质量。与人类不同,轴龙能够再生其下颌骨,但其基本机制及其与肢体再生机制的相似性尚不清楚。在这项工作中,我们采用形态学、组织学和转录组学方法分析了斧腹鱼下颌骨侧面切除缺损的再生过程。我们发现,这种结构可以在90天内通过间隙最小化、胚芽组织形成以及最后的组织生长、分化和整合再生所有缺失组织。此外,对再生下颚和四肢的转录组比较表明,它们具有相同的再生分子阶段,这些相似性在胚泡阶段达到顶峰,而下颚的再生速度较慢。总之,我们的研究证明,在斧尾蜥胚胎起源不同的两种不同再生身体结构中,存在一个共享的再生程序,有助于我们理解脊椎动物成功再生的最低要求,使我们更接近于理解人类下颌骨的类似病变。
{"title":"Axolotl mandible regeneration occurs through mechanical gap closure and a shared regenerative program with the limb.","authors":"Julia Kramer, Rita Aires, Sean D Keeley, Tom Alexander Schröder, Günter Lauer, Tatiana Sandoval-Guzmán","doi":"10.1242/dmm.050743","DOIUrl":"https://doi.org/10.1242/dmm.050743","url":null,"abstract":"<p><p>The mandible plays an essential part in human life and, thus, defects in this structure can dramatically impair the quality of life in patients. Axolotls, unlike humans, are capable of regenerating their lower jaws; however, the underlying mechanisms and their similarity to those in limb regeneration are unknown. In this work, we used morphological, histological, and transcriptomic approaches to analyze the regeneration of lateral resection defects in the axolotl mandible. We found that this structure can regenerate all missing tissues in 90 days through gap minimization, blastema formation, and finally tissue growth, differentiation, and integration. Moreover, transcriptomic comparisons of regenerating mandibles and limbs showed that they share molecular phases of regeneration, that these similarities peak during blastema stages, and that mandible regeneration occurs at a slower pacing. Altogether, our study demonstrates the existence of a shared regenerative program used in two different regenerating body structures with different embryonic origins in the axolotl, and contributes to our understanding of the minimum requirements for a successful regeneration in vertebrates, bringing us closer to understand similar lesions in human mandibles.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compromised COPII vesicle trafficking leads to glycogenic hepatopathy in zebrafish. COPII囊泡贩运功能受损导致斑马鱼糖源性肝病
IF 4 3区 医学 Q2 CELL BIOLOGY Pub Date : 2024-08-14 DOI: 10.1242/dmm.050748
Yuxi Yang, Xue Zhang, Qingshun Zhao, Jingzi Zhang, Xin Lou

Being a vital cellular process, COPII vesicle trafficking has been found plays a crucial role in liver metabolism. However, its functions and the underlying mechanisms in systemic metabolic homeostasis have not been fully understood. Here, with a newly identified gene trap zebrafish line (sec31anju221), we show that compromised COPII vesicle trafficking leads to biphasic abnormal hepatic metabolism. During the larval stage, deficiency of COPII-mediated trafficking leads to activation of unfolded protein reaction (UPR) and the development of hepatic steatosis. By using epistasis analysis, we found eIF2a/ATF4 branch serves as the primary effector for liver steatosis. In adult sec31anju221 fish, the hepatosteatosis was reversed and the phenotype swing to glycogenic hepatopathy. Proteomic profiling and biochemical assay indicate sec31anju221 fish are in a state of hypothyroidism. Moreover, our study showed thyroid hormone treatment alleviates the metabolic defects. This study provides insights into processes of liver diseases associated with vesicle trafficking impairments and has expanded our understanding of the pathological interplay between thyroid and liver.

作为一个重要的细胞过程,人们发现 COPII 囊泡的运输在肝脏代谢中起着至关重要的作用。然而,人们对其在系统代谢平衡中的功能和内在机制还不完全了解。在这里,我们通过一个新发现的基因诱捕斑马鱼品系(sec31anju221)表明,COPII囊泡贩运功能受损会导致双相异常肝脏代谢。在幼鱼阶段,COPII 介导的贩运缺陷会导致未折叠蛋白反应(UPR)的激活和肝脏脂肪变性的发生。通过外显子分析,我们发现eIF2a/ATF4分支是肝脏脂肪变性的主要效应因子。在成鱼sec31anju221中,肝脂肪变性被逆转,表型转变为糖原性肝炎。蛋白质组分析和生化检测表明,sec31anju221鱼处于甲状腺机能减退状态。此外,我们的研究表明,甲状腺激素治疗可缓解代谢缺陷。这项研究深入揭示了与囊泡运输障碍相关的肝脏疾病的过程,并拓展了我们对甲状腺与肝脏之间病理相互作用的认识。
{"title":"Compromised COPII vesicle trafficking leads to glycogenic hepatopathy in zebrafish.","authors":"Yuxi Yang, Xue Zhang, Qingshun Zhao, Jingzi Zhang, Xin Lou","doi":"10.1242/dmm.050748","DOIUrl":"https://doi.org/10.1242/dmm.050748","url":null,"abstract":"<p><p>Being a vital cellular process, COPII vesicle trafficking has been found plays a crucial role in liver metabolism. However, its functions and the underlying mechanisms in systemic metabolic homeostasis have not been fully understood. Here, with a newly identified gene trap zebrafish line (sec31anju221), we show that compromised COPII vesicle trafficking leads to biphasic abnormal hepatic metabolism. During the larval stage, deficiency of COPII-mediated trafficking leads to activation of unfolded protein reaction (UPR) and the development of hepatic steatosis. By using epistasis analysis, we found eIF2a/ATF4 branch serves as the primary effector for liver steatosis. In adult sec31anju221 fish, the hepatosteatosis was reversed and the phenotype swing to glycogenic hepatopathy. Proteomic profiling and biochemical assay indicate sec31anju221 fish are in a state of hypothyroidism. Moreover, our study showed thyroid hormone treatment alleviates the metabolic defects. This study provides insights into processes of liver diseases associated with vesicle trafficking impairments and has expanded our understanding of the pathological interplay between thyroid and liver.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex specific emergence of trisomic Dyrk1a-related skeletal phenotypes in the development of a Down syndrome mouse model. 在唐氏综合征小鼠模型的发育过程中,出现与三体 Dyrk1a 相关的骨骼表型的性别特异性。
IF 4 3区 医学 Q2 CELL BIOLOGY Pub Date : 2024-08-13 DOI: 10.1242/dmm.050914
Jonathan M LaCombe, Kourtney Sloan, Jared R Thomas, Matthew P Blackwell, Isabella Crawford, Flannery Bishop, Joseph M Wallace, Randall J Roper

Skeletal insufficiency affects all individuals with Down syndrome (DS) or Trisomy 21 (Ts21) and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30 when there were persistent trabecular and cortical deficits and Dyrk1a was trending overexpression. Correction of DS-related skeletal deficits by a purported DYRK1A inhibitor or through genetic means beginning at P21 was not effective at P30, but germline normalization of Dyrk1a improved male bone structure by P36. Trabecular and cortical deficits in female Ts65Dn mice were evident at P30 but subsided by P36, typifying periodic developmental skeletal normalizations that progressed to more prominent bone deficiencies. Sex-dependent differences in skeletal deficits with a delayed impact of trisomic Dyrk1a are important to find temporally specific treatment periods for bone and other phenotypes associated with Ts21.

骨骼发育不全会影响所有患有唐氏综合征(DS)或 21 三体综合征(Ts21)的个体,与发育正常的个体相比,由于骨骼形成期缩短和骨量峰值提前达到,骨骼发育不全可能会改变整个发育过程中的骨强度。患有 DS 的男性也会先于女性出现骨骼畸形。在雄性Ts65Dn DS模型小鼠的股骨中,皮质缺陷在整个发育过程中都很明显,但骨小梁缺陷和Dyrk1a过表达是暂时的,直到出生后第30天,才出现持续的骨小梁和皮质缺陷以及Dyrk1a过表达趋势。从 P21 开始,通过所谓的 DYRK1A 抑制剂或基因手段来纠正 DS 相关的骨骼缺陷,但在 P30 时效果不佳,但到 P36 时,Dyrk1a 的种系正常化改善了雄性的骨骼结构。雌性Ts65Dn小鼠的骨小梁和皮质缺陷在P30时很明显,但到P36时有所缓解,这是周期性骨骼发育正常化的典型表现,这种正常化会发展成更突出的骨骼缺陷。三体Dyrk1a的延迟影响导致骨骼缺陷的性别差异,这对于找到与Ts21相关的骨骼和其他表型的时间特异性治疗期非常重要。
{"title":"Sex specific emergence of trisomic Dyrk1a-related skeletal phenotypes in the development of a Down syndrome mouse model.","authors":"Jonathan M LaCombe, Kourtney Sloan, Jared R Thomas, Matthew P Blackwell, Isabella Crawford, Flannery Bishop, Joseph M Wallace, Randall J Roper","doi":"10.1242/dmm.050914","DOIUrl":"10.1242/dmm.050914","url":null,"abstract":"<p><p>Skeletal insufficiency affects all individuals with Down syndrome (DS) or Trisomy 21 (Ts21) and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30 when there were persistent trabecular and cortical deficits and Dyrk1a was trending overexpression. Correction of DS-related skeletal deficits by a purported DYRK1A inhibitor or through genetic means beginning at P21 was not effective at P30, but germline normalization of Dyrk1a improved male bone structure by P36. Trabecular and cortical deficits in female Ts65Dn mice were evident at P30 but subsided by P36, typifying periodic developmental skeletal normalizations that progressed to more prominent bone deficiencies. Sex-dependent differences in skeletal deficits with a delayed impact of trisomic Dyrk1a are important to find temporally specific treatment periods for bone and other phenotypes associated with Ts21.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation and characterization of a novel mouse model of Becker Muscular Dystrophy with a deletion of exons 52 to 55. 外显子 52 至 55 缺失的贝克尔肌肉营养不良症新型小鼠模型的生成和特征描述。
IF 4 3区 医学 Q2 CELL BIOLOGY Pub Date : 2024-08-05 DOI: 10.1242/dmm.050595
Lucie O M Perillat, Tatianna W Y Wong, Eleonora Maino, Abdalla Ahmed, Ori Scott, Elzbieta Hyatt, Paul Delgado-Olguin, Shagana Visuvanathan, Evgueni A Ivakine, Ronald D Cohn

Becker Muscular Dystrophy (BMD) is a rare X-linked recessive neuromuscular disorder frequently caused by in-frame deletions in the DMD gene that result in the production of a truncated, yet functional, dystrophin protein. The consequences of BMD-causing in-frame deletions on the organism are difficult to predict, especially in regard to long-term prognosis. Here, we employed CRISPR-Cas9 to generate a new Dmd del52-55 mouse model by deleting exons 52-55, resulting in a BMD-like in-frame deletion. To delineate the long-term effects of this deletion, we studied these mice over 52 weeks by performing histology and echocardiography analyses and assessing motor functions. Our results suggest that a truncated dystrophin is sufficient to maintain wildtype-like muscle and heart histology and functions in young mice. However, the truncated protein appears insufficient to maintain normal muscle homeostasis and protect against exercise-induced damage at 52 weeks. To further delineate the effects of this exon52-55 in-frame deletion, we performed RNA-Seq pre- and post-exercise and identified several differentially expressed pathways that reflect the abnormal muscle phenotype observed at 52 weeks in the BMD model.

贝克尔肌肉萎缩症(BMD)是一种罕见的 X 连锁隐性神经肌肉疾病,常因 DMD 基因中的框架内缺失导致产生截短但功能正常的肌营养不良蛋白而引起。导致 BMD 的框架内缺失对机体的影响很难预测,尤其是在长期预后方面。在这里,我们采用 CRISPR-Cas9 技术,通过缺失 52-55 号外显子产生了一种新的 Dmd del52-55 小鼠模型,从而导致类似 BMD 的框架内缺失。为了明确这种缺失的长期影响,我们对这些小鼠进行了长达 52 周的研究,包括进行组织学和超声心动图分析以及评估运动功能。我们的研究结果表明,在幼年小鼠体内,截短的肌营养不良蛋白足以维持野生型的肌肉和心脏组织学及功能。然而,截短蛋白似乎不足以维持正常的肌肉稳态,也不足以在52周时保护小鼠免受运动引起的损伤。为了进一步阐明这种外显子52-55框内缺失的影响,我们在运动前和运动后进行了RNA-Seq分析,发现了几种不同的表达途径,它们反映了在BMD模型中52周时观察到的异常肌肉表型。
{"title":"Generation and characterization of a novel mouse model of Becker Muscular Dystrophy with a deletion of exons 52 to 55.","authors":"Lucie O M Perillat, Tatianna W Y Wong, Eleonora Maino, Abdalla Ahmed, Ori Scott, Elzbieta Hyatt, Paul Delgado-Olguin, Shagana Visuvanathan, Evgueni A Ivakine, Ronald D Cohn","doi":"10.1242/dmm.050595","DOIUrl":"https://doi.org/10.1242/dmm.050595","url":null,"abstract":"<p><p>Becker Muscular Dystrophy (BMD) is a rare X-linked recessive neuromuscular disorder frequently caused by in-frame deletions in the DMD gene that result in the production of a truncated, yet functional, dystrophin protein. The consequences of BMD-causing in-frame deletions on the organism are difficult to predict, especially in regard to long-term prognosis. Here, we employed CRISPR-Cas9 to generate a new Dmd del52-55 mouse model by deleting exons 52-55, resulting in a BMD-like in-frame deletion. To delineate the long-term effects of this deletion, we studied these mice over 52 weeks by performing histology and echocardiography analyses and assessing motor functions. Our results suggest that a truncated dystrophin is sufficient to maintain wildtype-like muscle and heart histology and functions in young mice. However, the truncated protein appears insufficient to maintain normal muscle homeostasis and protect against exercise-induced damage at 52 weeks. To further delineate the effects of this exon52-55 in-frame deletion, we performed RNA-Seq pre- and post-exercise and identified several differentially expressed pathways that reflect the abnormal muscle phenotype observed at 52 weeks in the BMD model.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduced connexin-43 expression, slow conduction and repolarisation dispersion in a model of hypertrophic cardiomyopathy. 肥厚型心肌病模型中连接蛋白-43表达减少、传导缓慢和再极化弥散。
IF 4 3区 医学 Q2 CELL BIOLOGY Pub Date : 2024-08-01 Epub Date: 2024-08-27 DOI: 10.1242/dmm.050407
Seakcheng Lim, Melissa M Mangala, Mira Holliday, Henrietta Cserne Szappanos, Samantha Barratt-Ross, Serena Li, Jordan Thorpe, Whitney Liang, Ginell N Ranpura, Jamie I Vandenberg, Christopher Semsarian, Adam P Hill, Livia C Hool

Hypertrophic cardiomyopathy (HCM) is an inherited heart muscle disease that is characterised by left ventricular wall thickening, cardiomyocyte disarray and fibrosis, and is associated with arrhythmias, heart failure and sudden death. However, it is unclear to what extent the electrophysiological disturbances that lead to sudden death occur secondary to structural changes in the myocardium or as a result of HCM cardiomyocyte electrophysiology. In this study, we used an induced pluripotent stem cell model of the R403Q variant in myosin heavy chain 7 (MYH7) to study the electrophysiology of HCM cardiomyocytes in electrically coupled syncytia, revealing significant conduction slowing and increased spatial dispersion of repolarisation - both well-established substrates for arrhythmia. Analysis of rhythmonome protein expression in MYH7 R403Q cardiomyocytes showed reduced expression of connexin-43 (also known as GJA1), sodium channels and inward rectifier potassium channels - a three-way hit that reduces electrotonic coupling and slows cardiac conduction. Our data represent a previously unreported, biophysical basis for arrhythmia in HCM that is intrinsic to cardiomyocyte electrophysiology. Later in the progression of the disease, these proarrhythmic phenotypes may be accentuated by myocyte disarray and fibrosis to contribute to sudden death.

肥厚型心肌病(HCM)是一种遗传性心肌病,其特征是左心室壁增厚、心肌细胞混乱和纤维化,并与心律失常、心力衰竭和猝死有关。然而,目前还不清楚导致猝死的电生理紊乱在多大程度上是继发于心肌结构变化,或者是 HCM 心肌细胞电生理学的结果。在这项研究中,我们利用肌球蛋白重链 7(MYH7)R403Q 变异的诱导多能干细胞模型,研究了电耦合合胞体中 HCM 心肌细胞的电生理学,发现了明显的传导减慢和复极化空间弥散增加--两者都是心律失常的既定基质。对 MYH7 R403Q 心肌细胞中节律组蛋白表达的分析表明,Connexin-43(又称 GJA1)、钠通道和内向整流钾通道的表达减少--这三者的结合降低了电偶联性并减慢了心脏传导。我们的数据代表了以前未报道过的 HCM 心律失常的生物物理基础,这是心肌细胞电生理学的内在因素。在疾病发展的后期,这些促心律失常表型可能会因心肌细胞混乱和纤维化而加剧,从而导致猝死。
{"title":"Reduced connexin-43 expression, slow conduction and repolarisation dispersion in a model of hypertrophic cardiomyopathy.","authors":"Seakcheng Lim, Melissa M Mangala, Mira Holliday, Henrietta Cserne Szappanos, Samantha Barratt-Ross, Serena Li, Jordan Thorpe, Whitney Liang, Ginell N Ranpura, Jamie I Vandenberg, Christopher Semsarian, Adam P Hill, Livia C Hool","doi":"10.1242/dmm.050407","DOIUrl":"https://doi.org/10.1242/dmm.050407","url":null,"abstract":"<p><p>Hypertrophic cardiomyopathy (HCM) is an inherited heart muscle disease that is characterised by left ventricular wall thickening, cardiomyocyte disarray and fibrosis, and is associated with arrhythmias, heart failure and sudden death. However, it is unclear to what extent the electrophysiological disturbances that lead to sudden death occur secondary to structural changes in the myocardium or as a result of HCM cardiomyocyte electrophysiology. In this study, we used an induced pluripotent stem cell model of the R403Q variant in myosin heavy chain 7 (MYH7) to study the electrophysiology of HCM cardiomyocytes in electrically coupled syncytia, revealing significant conduction slowing and increased spatial dispersion of repolarisation - both well-established substrates for arrhythmia. Analysis of rhythmonome protein expression in MYH7 R403Q cardiomyocytes showed reduced expression of connexin-43 (also known as GJA1), sodium channels and inward rectifier potassium channels - a three-way hit that reduces electrotonic coupling and slows cardiac conduction. Our data represent a previously unreported, biophysical basis for arrhythmia in HCM that is intrinsic to cardiomyocyte electrophysiology. Later in the progression of the disease, these proarrhythmic phenotypes may be accentuated by myocyte disarray and fibrosis to contribute to sudden death.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142072319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the interplay between dNTP metabolism and genome stability in cancer. 了解癌症中 dNTP 代谢与基因组稳定性之间的相互作用。
IF 4 3区 医学 Q2 CELL BIOLOGY Pub Date : 2024-08-01 Epub Date: 2024-08-29 DOI: 10.1242/dmm.050775
Miriam Yagüe-Capilla, Sean G Rudd

The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies. In this Review, we compile the current knowledge on both the causes and consequences of dNTP pool perturbations in cancer cells, together with their impact on genome stability. We outline several outstanding questions remaining in the field, such as the role of dNTP catabolism in genome stability and the consequences of dNTP pool expansion. Importantly, we detail how our mechanistic understanding of these processes can be utilised with the aim of providing better informed treatment options to patients with cancer.

细胞内 DNA 前体池的大小和组成是维持基因组稳定性不可或缺的因素,这种关系是我们了解癌症的基础。癌变的主要方面,包括癌细胞突变率升高和诱导某些类型的 DNA 损伤,都与脱氧核苷三磷酸(dNTP)池的紊乱有关。此外,我们治疗癌症的方法在很大程度上利用了 DNA 和 dNTP 池之间的新陈代谢相互作用,其中一个由来已久的例子就是使用基于抗代谢物的癌症疗法。在本综述中,我们梳理了目前关于癌细胞中 dNTP 池扰动的原因和后果及其对基因组稳定性的影响的知识。我们概述了该领域的几个悬而未决的问题,如 dNTP 分解在基因组稳定性中的作用以及 dNTP 池扩大的后果。重要的是,我们详细介绍了如何利用我们对这些过程的机理认识,为癌症患者提供更明智的治疗方案。
{"title":"Understanding the interplay between dNTP metabolism and genome stability in cancer.","authors":"Miriam Yagüe-Capilla, Sean G Rudd","doi":"10.1242/dmm.050775","DOIUrl":"https://doi.org/10.1242/dmm.050775","url":null,"abstract":"<p><p>The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies. In this Review, we compile the current knowledge on both the causes and consequences of dNTP pool perturbations in cancer cells, together with their impact on genome stability. We outline several outstanding questions remaining in the field, such as the role of dNTP catabolism in genome stability and the consequences of dNTP pool expansion. Importantly, we detail how our mechanistic understanding of these processes can be utilised with the aim of providing better informed treatment options to patients with cancer.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of a monkey model with experimental retinal damage induced by N-methyl-D-aspartate. N-甲基-D-天冬氨酸诱导的实验性视网膜损伤猴子模型的特征。
IF 4 3区 医学 Q2 CELL BIOLOGY Pub Date : 2024-08-01 Epub Date: 2024-07-26 DOI: 10.1242/dmm.050033
Guo Liu, Longxiang Huang, Junkai Tan, Yun Wang, Chunlin Lan, Yaxi Chen, Yukai Mao, Xizhen Wang, Ning Fan, Yihua Zhu, Xianjun Zhu, Xuyang Liu

N-methyl-D-aspartate (NMDA)-induced retinal damage has been well studied in rodents, but the detailed mechanisms have not yet been characterized in nonhuman primates. Here, we characterized the retinal degenerative effects of NMDA on rhesus monkeys in vivo. NMDA saline or saline-only control was injected intravitreally to the randomly assigned eyes and contralateral eyes of four rhesus monkeys, respectively. The structural and functional changes of retina were characterized by optical coherence tomography and electroretinography on days 0, 4, 30 and 60 post injection. Both optic discs and macular areas of the NMDA-injected eyes initially presented with a transient retinal thickening, followed by continued retinal thinning. The initial, transient retinal thickening has also been observed in glaucoma patients, but this has not been reported in rodent NMDA models. This initial response was followed by loss of retina ganglion cells (RGCs), which is similar to glaucomatous optic neuropathy and other RGC-related retinal degenerations. The amplitudes of both the photopic negative response and pattern electroretinogram decreased significantly and remained low until the end of the study. Thus, the NMDA monkey model may serve as a more clinically relevant animal model of retinal damage.

N-甲基-D-天冬氨酸(NMDA)诱导的视网膜损伤已在啮齿类动物中进行了深入研究,但其在非人灵长类动物中的详细机制尚未确定。在这里,我们描述了 NMDA 对恒河猴视网膜退化效应的活体特征。我们分别向四只恒河猴随机分配的眼睛和对侧眼玻璃体内注射了 NMDA 生理盐水或仅含生理盐水的对照组。注射后第 0、4、30 和 60 天,通过光学相干断层扫描和视网膜电图观察视网膜的结构和功能变化。NMDA注射眼的视盘和黄斑区最初都出现了短暂的视网膜增厚,随后视网膜持续变薄。在青光眼患者中也观察到了最初的一过性视网膜增厚,但在啮齿类 NMDA 模型中尚未见报道。最初的反应之后是视网膜神经节细胞(RGC)的丧失,这与青光眼性视神经病变和其他与 RGC 相关的视网膜变性相似。光视负反应和模式视网膜电图的振幅都显著下降,并且直到研究结束都保持在较低水平。因此,NMDA猴模型可能是一种更贴近临床的视网膜损伤动物模型。
{"title":"Characterization of a monkey model with experimental retinal damage induced by N-methyl-D-aspartate.","authors":"Guo Liu, Longxiang Huang, Junkai Tan, Yun Wang, Chunlin Lan, Yaxi Chen, Yukai Mao, Xizhen Wang, Ning Fan, Yihua Zhu, Xianjun Zhu, Xuyang Liu","doi":"10.1242/dmm.050033","DOIUrl":"https://doi.org/10.1242/dmm.050033","url":null,"abstract":"<p><p>N-methyl-D-aspartate (NMDA)-induced retinal damage has been well studied in rodents, but the detailed mechanisms have not yet been characterized in nonhuman primates. Here, we characterized the retinal degenerative effects of NMDA on rhesus monkeys in vivo. NMDA saline or saline-only control was injected intravitreally to the randomly assigned eyes and contralateral eyes of four rhesus monkeys, respectively. The structural and functional changes of retina were characterized by optical coherence tomography and electroretinography on days 0, 4, 30 and 60 post injection. Both optic discs and macular areas of the NMDA-injected eyes initially presented with a transient retinal thickening, followed by continued retinal thinning. The initial, transient retinal thickening has also been observed in glaucoma patients, but this has not been reported in rodent NMDA models. This initial response was followed by loss of retina ganglion cells (RGCs), which is similar to glaucomatous optic neuropathy and other RGC-related retinal degenerations. The amplitudes of both the photopic negative response and pattern electroretinogram decreased significantly and remained low until the end of the study. Thus, the NMDA monkey model may serve as a more clinically relevant animal model of retinal damage.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Negative equity - the value of reporting negative results. 负资产--报告负面结果的价值。
IF 4 3区 医学 Q2 CELL BIOLOGY Pub Date : 2024-08-01 Epub Date: 2024-08-30 DOI: 10.1242/dmm.050937
Owen Sansom, Debora Bogani, Linus Reichenbach, Sara Wells

A pervasive discussion point within the scientific community is the value of unpublished or unavailable data. Researchers, funders, ethical review bodies, editors and publishers have all highlighted the need to make more data available to enhance experimental planning and interpretation and to prevent others from repeating similar experiments. This is particularly important in the context of experimentation involving animals and efforts towards replacement, refinement and reduction. However, despite this broad agreement, sharing data that show inconclusive, statistically insignificant or unremarkable results is still not common practice. In this Editorial, we will highlight the value of what are often coined negative (or null) data and outline some emerging initiatives to address the gap between data generated in laboratories and data available to the wider scientific community.

科学界普遍讨论的一个问题是未发表或不可用数据的价值。研究人员、资助者、伦理审查机构、编辑和出版商都强调需要提供更多数据,以加强实验规划和解释,并防止他人重复类似实验。这一点对于涉及动物的实验以及替代、改进和减少实验的努力尤为重要。然而,尽管存在这种广泛的共识,但共享那些显示不确定、统计上不重要或不显著结果的数据仍不是普遍做法。在这篇社论中,我们将强调通常被称为阴性(或空)数据的价值,并概述一些新出现的倡议,以解决实验室产生的数据与更广泛的科学界可获得的数据之间的差距。
{"title":"Negative equity - the value of reporting negative results.","authors":"Owen Sansom, Debora Bogani, Linus Reichenbach, Sara Wells","doi":"10.1242/dmm.050937","DOIUrl":"10.1242/dmm.050937","url":null,"abstract":"<p><p>A pervasive discussion point within the scientific community is the value of unpublished or unavailable data. Researchers, funders, ethical review bodies, editors and publishers have all highlighted the need to make more data available to enhance experimental planning and interpretation and to prevent others from repeating similar experiments. This is particularly important in the context of experimentation involving animals and efforts towards replacement, refinement and reduction. However, despite this broad agreement, sharing data that show inconclusive, statistically insignificant or unremarkable results is still not common practice. In this Editorial, we will highlight the value of what are often coined negative (or null) data and outline some emerging initiatives to address the gap between data generated in laboratories and data available to the wider scientific community.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Disease Models & Mechanisms
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1