Shifang Sun, Shungen Xiao, Zhen Jiang, Junfeng Xiao, Qi He, Mei Wang, Yanfen Fan
{"title":"Radiomic Analysis of Contrast-Enhanced CT Predicts Glypican 3-Positive Hepatocellular Carcinoma.","authors":"Shifang Sun, Shungen Xiao, Zhen Jiang, Junfeng Xiao, Qi He, Mei Wang, Yanfen Fan","doi":"10.2174/0115734056277475240215115629","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Glypican 3 (GPC3)-positive expression in Hepatocellular Carcinoma (HCC) is associated with a worse prognosis. Moreover, GPC3 has emerged as an immunotherapeutic target in advanced unresectable HCC systemic therapy. It is significant to diagnose GPC3-positive HCCs before therapy. Regarding imaging diagnosis of HCC, dynamic contrast-enhanced CT is more common than MRI in many regions.</p><p><strong>Objective: </strong>The aim of this study was to construct and validate a radiomics model based on contrast-enhanced CT to predict the GPC3 expression in hepatocellular carcinoma.</p><p><strong>Methods: </strong>This retrospective study included 141 (training cohort: n = 100; validation cohort: n = 41) pathologically confirmed HCC patients. Radiomics features were extracted from the Artery Phase (AP) images of contrast-enhanced CT. Logistic regression with the Least Absolute Shrinkage and Selection Operator (LASSO) regularization was used to select features to construct radiomics score (Rad-score). A final combined model, including the Rad-score of the selected features and clinical risk factors, was established. Receiver Operating Characteristic (ROC) curve analysis, Delong test, and Decision Curve Analysis (DCA) were used to assess the predictive performance of the clinical and radiomics models.</p><p><strong>Results: </strong>5 features were selected to construct the AP radiomics model of contrast-enhanced CT. The radiomics model of AP from contrast-enhanced CT was superior to the clinical model of AFP in training cohorts (P < 0.001), but not superior to the clinical model in validation cohorts (P = 0.151). The combined model (AUC = 0.867 vs. 0.895), including AP Rad-score and serum Alpha-Fetoprotein (AFP) levels, improved the predictive performance more than the AFP model (AUC = 0.651 vs. 0.718) in the training and validation cohorts. The combined model, with a higher decision curve indicating more net benefit, exhibited a better predictive performance than the AP radiomics model. DCA revealed that at a range threshold probability approximately above 60%, the combined model added more net benefit compared to the AP radiomics model of contrastenhanced CT.</p><p><strong>Conclusion: </strong>A combined model including AP Rad-score and serum AFP levels based on contrast-enhanced CT could preoperatively predict GPC3-positive expression in HCC.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056277475240215115629","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The Glypican 3 (GPC3)-positive expression in Hepatocellular Carcinoma (HCC) is associated with a worse prognosis. Moreover, GPC3 has emerged as an immunotherapeutic target in advanced unresectable HCC systemic therapy. It is significant to diagnose GPC3-positive HCCs before therapy. Regarding imaging diagnosis of HCC, dynamic contrast-enhanced CT is more common than MRI in many regions.
Objective: The aim of this study was to construct and validate a radiomics model based on contrast-enhanced CT to predict the GPC3 expression in hepatocellular carcinoma.
Methods: This retrospective study included 141 (training cohort: n = 100; validation cohort: n = 41) pathologically confirmed HCC patients. Radiomics features were extracted from the Artery Phase (AP) images of contrast-enhanced CT. Logistic regression with the Least Absolute Shrinkage and Selection Operator (LASSO) regularization was used to select features to construct radiomics score (Rad-score). A final combined model, including the Rad-score of the selected features and clinical risk factors, was established. Receiver Operating Characteristic (ROC) curve analysis, Delong test, and Decision Curve Analysis (DCA) were used to assess the predictive performance of the clinical and radiomics models.
Results: 5 features were selected to construct the AP radiomics model of contrast-enhanced CT. The radiomics model of AP from contrast-enhanced CT was superior to the clinical model of AFP in training cohorts (P < 0.001), but not superior to the clinical model in validation cohorts (P = 0.151). The combined model (AUC = 0.867 vs. 0.895), including AP Rad-score and serum Alpha-Fetoprotein (AFP) levels, improved the predictive performance more than the AFP model (AUC = 0.651 vs. 0.718) in the training and validation cohorts. The combined model, with a higher decision curve indicating more net benefit, exhibited a better predictive performance than the AP radiomics model. DCA revealed that at a range threshold probability approximately above 60%, the combined model added more net benefit compared to the AP radiomics model of contrastenhanced CT.
Conclusion: A combined model including AP Rad-score and serum AFP levels based on contrast-enhanced CT could preoperatively predict GPC3-positive expression in HCC.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.