Electric circuit representation of the human circulatory system to estimate the position of nanosensors in vessels

IF 2.9 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Nano Communication Networks Pub Date : 2024-03-07 DOI:10.1016/j.nancom.2024.100499
Jorge Torres Gómez , Jorge Luis González Rios , Falko Dressler
{"title":"Electric circuit representation of the human circulatory system to estimate the position of nanosensors in vessels","authors":"Jorge Torres Gómez ,&nbsp;Jorge Luis González Rios ,&nbsp;Falko Dressler","doi":"10.1016/j.nancom.2024.100499","DOIUrl":null,"url":null,"abstract":"<div><p>Nanodevices are the focus of research enhancing the detection and treatment of diseases in the human body. Focusing on the scenario where nanosensors are flowing with the blood in the human circulatory system (HCS), in this work, we investigate a model to predict their distribution along the various vessel segments. Although various approaches report solutions for localizing nanosensors in the body, it is also relevant to derive their stationary distribution along the vessel segments as a prior step to assess their actuation and sensing capabilities in the body. We use a Markov chain formulation to derive the stationary distribution of nanosensors. We evaluate the transition probabilities relying on the representation of vessels with electric circuit components. We implement the electric circuit representation of the left ventricle in the heart and the arteries to find the blood flow at vessel bifurcations and then compute the Markov chain probabilities. Our system also allows to reveal the dynamics of the movement of nanosensors with the human activity. We illustrate results in two regimes, as low and high activity, to mimic the case when being at rest or doing sports.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"40 ","pages":"Article 100499"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S187877892400005X/pdfft?md5=cb14dc992bea817153057f50ee29be78&pid=1-s2.0-S187877892400005X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187877892400005X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Nanodevices are the focus of research enhancing the detection and treatment of diseases in the human body. Focusing on the scenario where nanosensors are flowing with the blood in the human circulatory system (HCS), in this work, we investigate a model to predict their distribution along the various vessel segments. Although various approaches report solutions for localizing nanosensors in the body, it is also relevant to derive their stationary distribution along the vessel segments as a prior step to assess their actuation and sensing capabilities in the body. We use a Markov chain formulation to derive the stationary distribution of nanosensors. We evaluate the transition probabilities relying on the representation of vessels with electric circuit components. We implement the electric circuit representation of the left ventricle in the heart and the arteries to find the blood flow at vessel bifurcations and then compute the Markov chain probabilities. Our system also allows to reveal the dynamics of the movement of nanosensors with the human activity. We illustrate results in two regimes, as low and high activity, to mimic the case when being at rest or doing sports.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人体循环系统的电路表示法,用于估算纳米传感器在血管中的位置
纳米设备是提高人体疾病检测和治疗水平的研究重点。在这项工作中,我们重点研究了纳米传感器在人体循环系统(HCS)中随血液流动的情况,并研究了一个模型来预测它们沿不同血管段的分布。虽然各种方法都报告了纳米传感器在体内定位的解决方案,但作为评估其在体内的致动和传感能力的先行步骤,推导其沿血管段的静态分布也很重要。我们使用马尔可夫链公式来推导纳米传感器的静态分布。我们利用电路元件来表示血管,从而评估过渡概率。我们实现了心脏左心室和动脉的电路表示,以找到血管分叉处的血流,然后计算马尔可夫链概率。我们的系统还能揭示纳米传感器随人体活动而移动的动态。我们展示了低活动和高活动两种状态下的结果,以模拟休息或运动时的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Communication Networks
Nano Communication Networks Mathematics-Applied Mathematics
CiteScore
6.00
自引率
6.90%
发文量
14
期刊介绍: The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published. Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.
期刊最新文献
Estimating channel coefficients for complex topologies in 3D diffusion channel using artificial neural networks Terahertz beam shaping using space-time phase-only coded metasurfaces All-optical AND, NAND, OR, NOR and NOT logic gates using two nested microrings in a racetrack ring resonator End-to-end synaptic molecular communication with astrocytic feedback and generic three-state receptors Design of ternary reversible Feynman and Toffoli gates in ternary quantum-dot cellular automata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1