Minwoo Nam, Jaehyeock Chang, Hagseon Kim, Young Hyun Son, Yongmin Jeon, Jeong Hyun Kwon, Kyung Cheol Choi
{"title":"Highly reliable and stretchable OLEDs based on facile patterning method: toward stretchable organic optoelectronic devices","authors":"Minwoo Nam, Jaehyeock Chang, Hagseon Kim, Young Hyun Son, Yongmin Jeon, Jeong Hyun Kwon, Kyung Cheol Choi","doi":"10.1038/s41528-024-00303-5","DOIUrl":null,"url":null,"abstract":"Stretchable displays attract significant attention because of their potential applications in wearable electronics, smart textiles, and human-conformable devices. This paper introduces an electrically stable, mechanically ultra-robust, and water-resistant stretchable OLED display (SOLED) mounted on a stress-relief pillar platform. The SOLED is fabricated on a thin, transparent polyethylene terephthalate (PET) film using conventional vacuum evaporation, organic-inorganic hybrid thin film encapsulation (TFE), and a nonselective laser patterning process. This simple and efficient process yields an OLED display with exceptional stretchability, reaching up to 95% strain and outstanding durability, enduring 100,000 stretch-release cycles at 50% strain. Operational lifetime and water-resistant storage lifetime measurements confirm that the TFE provides effective protection even after the nonselective laser patterning process. A 3 × 3 array SOLED display module mounted on a stress-relief pillar platform is successfully implemented, marking the first case of water-resistant display array operation in the field of SOLEDs. This work aims to develop practical stretchable displays by offering a reliable fabrication method and device design for creating mechanically robust and adaptable displays, potentially paving the way for future advances in human-conformable electronics and other innovative applications.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-14"},"PeriodicalIF":12.3000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00303-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00303-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Stretchable displays attract significant attention because of their potential applications in wearable electronics, smart textiles, and human-conformable devices. This paper introduces an electrically stable, mechanically ultra-robust, and water-resistant stretchable OLED display (SOLED) mounted on a stress-relief pillar platform. The SOLED is fabricated on a thin, transparent polyethylene terephthalate (PET) film using conventional vacuum evaporation, organic-inorganic hybrid thin film encapsulation (TFE), and a nonselective laser patterning process. This simple and efficient process yields an OLED display with exceptional stretchability, reaching up to 95% strain and outstanding durability, enduring 100,000 stretch-release cycles at 50% strain. Operational lifetime and water-resistant storage lifetime measurements confirm that the TFE provides effective protection even after the nonselective laser patterning process. A 3 × 3 array SOLED display module mounted on a stress-relief pillar platform is successfully implemented, marking the first case of water-resistant display array operation in the field of SOLEDs. This work aims to develop practical stretchable displays by offering a reliable fabrication method and device design for creating mechanically robust and adaptable displays, potentially paving the way for future advances in human-conformable electronics and other innovative applications.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.