Haipeng Li, Hai Jiang, Ao Luo, Ping Tan, Haoqiang Fan, Bing Zeng, Shuaicheng Liu
{"title":"DMHomo: Learning Homography with Diffusion Models","authors":"Haipeng Li, Hai Jiang, Ao Luo, Ping Tan, Haoqiang Fan, Bing Zeng, Shuaicheng Liu","doi":"10.1145/3652207","DOIUrl":null,"url":null,"abstract":"<p>Supervised homography estimation methods face a challenge due to the lack of adequate labeled training data. To address this issue, we propose DMHomo, a diffusion model-based framework for supervised homography learning. This framework generates image pairs with accurate labels, realistic image content, and realistic interval motion, ensuring they satisfy adequate pairs. We utilize unlabeled image pairs with pseudo-labels such as homography and dominant plane masks, computed from existing methods, to train a diffusion model that generates a supervised training dataset. To further enhance performance, we introduce a new probabilistic mask loss, which identifies outlier regions through supervised training, and an iterative mechanism to optimize the generative and homography models successively. Our experimental results demonstrate that DMHomo effectively overcomes the scarcity of qualified datasets in supervised homography learning and improves generalization to real-world scenes. The code and dataset are available at: https://github.com/lhaippp/DMHomo</p>","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"107 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3652207","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Supervised homography estimation methods face a challenge due to the lack of adequate labeled training data. To address this issue, we propose DMHomo, a diffusion model-based framework for supervised homography learning. This framework generates image pairs with accurate labels, realistic image content, and realistic interval motion, ensuring they satisfy adequate pairs. We utilize unlabeled image pairs with pseudo-labels such as homography and dominant plane masks, computed from existing methods, to train a diffusion model that generates a supervised training dataset. To further enhance performance, we introduce a new probabilistic mask loss, which identifies outlier regions through supervised training, and an iterative mechanism to optimize the generative and homography models successively. Our experimental results demonstrate that DMHomo effectively overcomes the scarcity of qualified datasets in supervised homography learning and improves generalization to real-world scenes. The code and dataset are available at: https://github.com/lhaippp/DMHomo
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.