{"title":"An inclusion model for predicting granular elasticity incorporating force chain mechanics","authors":"Adyota Gupta, K. T. Ramesh, Ryan Hurley","doi":"10.1007/s10035-024-01411-9","DOIUrl":null,"url":null,"abstract":"<div><p>Granular media is ubiquitous, playing a vital role in a diverse set of applications. The complex microstructure of granular media results from assorted particle shapes, morphologies, and packings, make it difficult to predict its macroscopic behavior. Under compression, these complex microstructures enable highly anisotropic and heterogenous behaviors, including creation of highly-loaded particles (i.e. force chains) supported by clusters of minimally-loaded particles. While many existing constitutive models relate state variables describing microscale behavior to continuum properties, these models do not generally consider the mesoscale interactions between the force chain network and minimally-loaded particles. Here, we develop a micromechanics model that connects micro-scale force chain mechanics to macro-scale mechanical behavior through explicit consideration of the interaction between force chains and minimally-loaded particles. We first examine the elastic behavior of a force chain using a spring model, explicitly considering the mesoscale interactions between the force-chains and surrounding regions. We then construct an equivalent inclusion problem to calculate macroscopic mechanical response as analytical functions of microscopic properties, with proper consideration of mesoscale interactions. We present our calibration and validation approaches, showing the model’s predictive abilities. Finally, we examine the effect of relevant microscopic quantities on macroscopic response, demonstrating the importance of these mesoscale interactions on bulk deviatoric behavior.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01411-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Granular media is ubiquitous, playing a vital role in a diverse set of applications. The complex microstructure of granular media results from assorted particle shapes, morphologies, and packings, make it difficult to predict its macroscopic behavior. Under compression, these complex microstructures enable highly anisotropic and heterogenous behaviors, including creation of highly-loaded particles (i.e. force chains) supported by clusters of minimally-loaded particles. While many existing constitutive models relate state variables describing microscale behavior to continuum properties, these models do not generally consider the mesoscale interactions between the force chain network and minimally-loaded particles. Here, we develop a micromechanics model that connects micro-scale force chain mechanics to macro-scale mechanical behavior through explicit consideration of the interaction between force chains and minimally-loaded particles. We first examine the elastic behavior of a force chain using a spring model, explicitly considering the mesoscale interactions between the force-chains and surrounding regions. We then construct an equivalent inclusion problem to calculate macroscopic mechanical response as analytical functions of microscopic properties, with proper consideration of mesoscale interactions. We present our calibration and validation approaches, showing the model’s predictive abilities. Finally, we examine the effect of relevant microscopic quantities on macroscopic response, demonstrating the importance of these mesoscale interactions on bulk deviatoric behavior.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.