{"title":"Bioinformatics analysis of photoexcited natural flavonoid glycosides as the inhibitors for oropharyngeal HPV oncoproteins","authors":"Maryam Pourhajibagher, Abbas Bahador","doi":"10.1186/s13568-024-01684-6","DOIUrl":null,"url":null,"abstract":"<p>The presence of oropharyngeal human papillomavirus (HPV)-18 E6 and E7 oncoproteins is highly significant in the progression of oropharyngeal cancer. Natural flavonoid compounds have potential as photosensitizers for light-activated antimicrobial therapy against HPV-associated oropharyngeal cancer. This study evaluated five natural flavonoid glycosides including Fisetin, Kaempferol, Morin, Myricetin, and Quercetin as photosensitizers against HPV-18 E6 and E7 oncoproteins using computational methods. After obtaining the amino acid sequences of HPV-18 E6 and E7, various tools were used to predict and verify their properties. The PubChem database was then examined to identify potential natural flavonoid glycosides, followed by predictions of their drug-likeness and ADMET properties. Subsequently, molecular docking was conducted to enhance the screening accuracy and to gain insights into the interactions between the natural compounds and the active sites of HPV-18 E6 and E7 oncoproteins. The protein structures of E6 and E7 were predicted and validated to be reliable. The results of molecular docking demonstrated that Kaempferol exhibited the highest binding affinity to both E6 and E7. All compounds satisfied Lipinski's rules of drug-likeness, except Myricetin. They showed high absorption, distribution volume and similar ADMET profiles with no toxicity. In summary, natural flavonoid glycosides, especially Kaempferol, show potential as photosensitizers for antimicrobial photodynamic therapy against HPV-associated oropharyngeal cancer through inhibition of E6 and E7 oncoproteins. These findings provide insights into the development of novel therapeutic strategies based on antimicrobial photodynamic therapy.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"51 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01684-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of oropharyngeal human papillomavirus (HPV)-18 E6 and E7 oncoproteins is highly significant in the progression of oropharyngeal cancer. Natural flavonoid compounds have potential as photosensitizers for light-activated antimicrobial therapy against HPV-associated oropharyngeal cancer. This study evaluated five natural flavonoid glycosides including Fisetin, Kaempferol, Morin, Myricetin, and Quercetin as photosensitizers against HPV-18 E6 and E7 oncoproteins using computational methods. After obtaining the amino acid sequences of HPV-18 E6 and E7, various tools were used to predict and verify their properties. The PubChem database was then examined to identify potential natural flavonoid glycosides, followed by predictions of their drug-likeness and ADMET properties. Subsequently, molecular docking was conducted to enhance the screening accuracy and to gain insights into the interactions between the natural compounds and the active sites of HPV-18 E6 and E7 oncoproteins. The protein structures of E6 and E7 were predicted and validated to be reliable. The results of molecular docking demonstrated that Kaempferol exhibited the highest binding affinity to both E6 and E7. All compounds satisfied Lipinski's rules of drug-likeness, except Myricetin. They showed high absorption, distribution volume and similar ADMET profiles with no toxicity. In summary, natural flavonoid glycosides, especially Kaempferol, show potential as photosensitizers for antimicrobial photodynamic therapy against HPV-associated oropharyngeal cancer through inhibition of E6 and E7 oncoproteins. These findings provide insights into the development of novel therapeutic strategies based on antimicrobial photodynamic therapy.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.