{"title":"Averaging impulse responses using prediction pools","authors":"","doi":"10.1016/j.jmoneco.2024.103571","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Macroeconomists construct impulse responses using many competing time series<span> models and different statistical paradigms (Bayesian or frequentist). We adapt optimal linear prediction pools to efficiently combine impulse response estimators for the effects of the same economic shock from this vast class of possible models. We thus alleviate the need to choose one specific model, obtaining weights that are typically positive for more than one model. Our </span></span>Monte Carlo simulations and empirical applications illustrate how the weights leverage the strengths of each model by (i) trading off properties of each model depending on variable, horizon, and application and (ii) accounting for the full predictive distribution rather than being restricted to specific moments.</span><span><span><sup>1</sup></span></span></p></div>","PeriodicalId":48407,"journal":{"name":"Journal of Monetary Economics","volume":"146 ","pages":"Article 103571"},"PeriodicalIF":4.3000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Monetary Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304393224000242","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
Macroeconomists construct impulse responses using many competing time series models and different statistical paradigms (Bayesian or frequentist). We adapt optimal linear prediction pools to efficiently combine impulse response estimators for the effects of the same economic shock from this vast class of possible models. We thus alleviate the need to choose one specific model, obtaining weights that are typically positive for more than one model. Our Monte Carlo simulations and empirical applications illustrate how the weights leverage the strengths of each model by (i) trading off properties of each model depending on variable, horizon, and application and (ii) accounting for the full predictive distribution rather than being restricted to specific moments.1
期刊介绍:
The profession has witnessed over the past twenty years a remarkable expansion of research activities bearing on problems in the broader field of monetary economics. The strong interest in monetary analysis has been increasingly matched in recent years by the growing attention to the working and structure of financial institutions. The role of various institutional arrangements, the consequences of specific changes in banking structure and the welfare aspects of structural policies have attracted an increasing interest in the profession. There has also been a growing attention to the operation of credit markets and to various aspects in the behavior of rates of return on assets. The Journal of Monetary Economics provides a specialized forum for the publication of this research.