Exploring the Interplay between Local Chain Structure and Stress Distribution in Polymer Networks

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Chinese Journal of Polymer Science Pub Date : 2024-03-07 DOI:10.1007/s10118-024-3099-3
Jin-Tong Xue, Yang Bai, Li Peng, Xian-Bo Huang, Zhao-Yan Sun
{"title":"Exploring the Interplay between Local Chain Structure and Stress Distribution in Polymer Networks","authors":"Jin-Tong Xue,&nbsp;Yang Bai,&nbsp;Li Peng,&nbsp;Xian-Bo Huang,&nbsp;Zhao-Yan Sun","doi":"10.1007/s10118-024-3099-3","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanical behavior of polymer networks is intrinsically correlated with the local chain topology and chain connectivity. In this study, we delve into this relationship through the lens of coarse-grained molecular dynamics (CG-MD) simulations. Our aim is to illuminate the intricate interplay between local topology and stress distribution within polymer monomers, cross-linkers, and various components with distinct cross-link connections, thereby elucidating their collective impact on the mechanical properties of polymer networks. We mainly focus on how specific local structures contribute to the overall mechanical response of the network. In particular, we employ local stress analysis to unravel the mechanics of these structures. Our findings reveal the diverse responses of individual components, such as junctions, strands, cross-linkers between junctions, and dangling chain ends, when subjected to stretching. Notably, we observe that these components exhibit varying degrees of deformation tolerance, underscoring the significance of their roles in determining the mechanical characteristics of the network. Our investigations highlight junctions as primary contributors to stress accumulation, and particles with higher local stress showing a stronger correlation between stress and Voronoi volume. Moreover, our results indicate that both strands and cross-linkers between junctions exhibit heightened stress levels as strand lengths decrease. This study enhances our understanding of the multifaceted factors governing the mechanical attributes of cross-linked polymer systems at the microstructural level.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3099-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanical behavior of polymer networks is intrinsically correlated with the local chain topology and chain connectivity. In this study, we delve into this relationship through the lens of coarse-grained molecular dynamics (CG-MD) simulations. Our aim is to illuminate the intricate interplay between local topology and stress distribution within polymer monomers, cross-linkers, and various components with distinct cross-link connections, thereby elucidating their collective impact on the mechanical properties of polymer networks. We mainly focus on how specific local structures contribute to the overall mechanical response of the network. In particular, we employ local stress analysis to unravel the mechanics of these structures. Our findings reveal the diverse responses of individual components, such as junctions, strands, cross-linkers between junctions, and dangling chain ends, when subjected to stretching. Notably, we observe that these components exhibit varying degrees of deformation tolerance, underscoring the significance of their roles in determining the mechanical characteristics of the network. Our investigations highlight junctions as primary contributors to stress accumulation, and particles with higher local stress showing a stronger correlation between stress and Voronoi volume. Moreover, our results indicate that both strands and cross-linkers between junctions exhibit heightened stress levels as strand lengths decrease. This study enhances our understanding of the multifaceted factors governing the mechanical attributes of cross-linked polymer systems at the microstructural level.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索聚合物网络中局部链结构与应力分布之间的相互作用
聚合物网络的机械行为与局部链拓扑结构和链连接性有着内在联系。在本研究中,我们通过粗粒度分子动力学(CG-MD)模拟来深入探讨这种关系。我们的目的是阐明聚合物单体、交联剂以及具有不同交联连接的各种成分内部的局部拓扑结构与应力分布之间错综复杂的相互作用,从而阐明它们对聚合物网络的机械性能的共同影响。我们主要关注特定的局部结构如何影响网络的整体机械响应。特别是,我们采用局部应力分析来揭示这些结构的力学特性。我们的研究结果揭示了单个成分(如连接点、链、连接点之间的交联剂和悬链末端)在受到拉伸时的不同反应。值得注意的是,我们观察到这些成分表现出不同程度的变形耐受性,这突出了它们在决定网络机械特性方面的重要作用。我们的研究突出表明,交界处是造成应力累积的主要因素,局部应力较高的颗粒显示出应力与 Voronoi 体积之间更强的相关性。此外,我们的研究结果表明,随着链长的减少,连接点之间的链和交联剂都表现出更高的应力水平。这项研究加深了我们对在微观结构水平上影响交联聚合物系统机械属性的多方面因素的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
期刊最新文献
Special Issue: Dynamic Polymer Networks Regulation of Mechanical Properties of Conductive Polymer Composites High Performance Microwave Absorption Material Based on Metal-Backboned Polymer Hydrogen-Bonding Crosslinked Supramolecular Polymer Materials: From Design Evolution of Side-Chain Hydrogen-Bonding to Applications Robust Composite Separator Randomly Interwoven by PI and Pre-oxidized PAN Nanofibers for High Performance Lithium-ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1