Advancing nanoscale computing: Efficient reversible ALU in quantum-dot cellular automata

IF 2.9 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Nano Communication Networks Pub Date : 2024-03-11 DOI:10.1016/j.nancom.2024.100498
Shahrokh Nemattabar , Mohammad Mosleh , Majid Haghparast , Mohammad Kheyrandish
{"title":"Advancing nanoscale computing: Efficient reversible ALU in quantum-dot cellular automata","authors":"Shahrokh Nemattabar ,&nbsp;Mohammad Mosleh ,&nbsp;Majid Haghparast ,&nbsp;Mohammad Kheyrandish","doi":"10.1016/j.nancom.2024.100498","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a significant contribution to the field of nanoscale computing by proposing an innovative reversible Arithmetic and Logic Unit (ALU) implemented in Quantum-Dot Cellular Automata (QCA). Reversible logic and QCA technology offer promising alternatives to conventional CMOS technology, addressing the challenges of operating at nanoscale dimensions. The primary objective is to develop a highly efficient ALU capable of performing 26 distinct arithmetic and logical operations. The ALU design is based on a novel reversible full adder-subtractor optimized for minimal quantum cost, which is crucial for energy-efficient quantum computation. The evaluation encompasses various criteria related to reversibility, such as gate count, number of constant inputs, number of garbage outputs, and quantum cost. QCA-specific criteria, including cell count, occupied area, and clock cycles, are also considered. The outcomes of this research contribute to the advancement of cell-efficient nanoscale computing, with implications for quantum computation, emerging technologies, and future integrated circuit design.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"40 ","pages":"Article 100498"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778924000048","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a significant contribution to the field of nanoscale computing by proposing an innovative reversible Arithmetic and Logic Unit (ALU) implemented in Quantum-Dot Cellular Automata (QCA). Reversible logic and QCA technology offer promising alternatives to conventional CMOS technology, addressing the challenges of operating at nanoscale dimensions. The primary objective is to develop a highly efficient ALU capable of performing 26 distinct arithmetic and logical operations. The ALU design is based on a novel reversible full adder-subtractor optimized for minimal quantum cost, which is crucial for energy-efficient quantum computation. The evaluation encompasses various criteria related to reversibility, such as gate count, number of constant inputs, number of garbage outputs, and quantum cost. QCA-specific criteria, including cell count, occupied area, and clock cycles, are also considered. The outcomes of this research contribute to the advancement of cell-efficient nanoscale computing, with implications for quantum computation, emerging technologies, and future integrated circuit design.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推进纳米级计算:量子点蜂窝自动机中的高效可逆 ALU
本文提出了一种在量子点蜂窝自动机(QCA)中实现的创新型可逆算术逻辑单元(ALU),为纳米级计算领域做出了重大贡献。可逆逻辑和 QCA 技术为传统 CMOS 技术提供了前景广阔的替代方案,解决了在纳米级尺寸下运行所面临的挑战。其主要目标是开发一种能够执行 26 种不同算术和逻辑运算的高效 ALU。ALU 的设计基于一种新颖的可逆全加法器-减法器,经过优化,量子成本最小,这对高能效量子计算至关重要。评估包括与可逆性相关的各种标准,如门计数、常数输入数、垃圾输出数和量子成本。此外,还考虑了 QCA 的特定标准,包括单元数、占用面积和时钟周期。这项研究的成果有助于推动单元高效纳米级计算的发展,对量子计算、新兴技术和未来集成电路设计具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Communication Networks
Nano Communication Networks Mathematics-Applied Mathematics
CiteScore
6.00
自引率
6.90%
发文量
14
期刊介绍: The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published. Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.
期刊最新文献
Estimating channel coefficients for complex topologies in 3D diffusion channel using artificial neural networks Terahertz beam shaping using space-time phase-only coded metasurfaces All-optical AND, NAND, OR, NOR and NOT logic gates using two nested microrings in a racetrack ring resonator End-to-end synaptic molecular communication with astrocytic feedback and generic three-state receptors Design of ternary reversible Feynman and Toffoli gates in ternary quantum-dot cellular automata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1