Fractals in Neuroanatomy and Basic Neurosciences: An Overview.

Q3 Neuroscience Advances in neurobiology Pub Date : 2024-01-01 DOI:10.1007/978-3-031-47606-8_6
Antonio Di Ieva
{"title":"Fractals in Neuroanatomy and Basic Neurosciences: An Overview.","authors":"Antonio Di Ieva","doi":"10.1007/978-3-031-47606-8_6","DOIUrl":null,"url":null,"abstract":"<p><p>The introduction of fractal geometry to the neurosciences has been a major paradigm shift over the last decades as it has helped overcome approximations and limitations that occur when Euclidean and reductionist approaches are used to analyze neurons or the entire brain. Fractal geometry allows for quantitative analysis and description of the geometric complexity of the brain, from its single units to the neuronal networks.As illustrated in the second section of this book, fractal analysis provides a quantitative tool for the study of the morphology of brain cells (i.e., neurons and microglia) and its components (e.g., dendritic trees, synapses), as well as the brain structure itself (cortex, functional modules, neuronal networks). The self-similar logic which generates and shapes the different hierarchical systems of the brain and even some structures related to its \"container,\" that is, the cranial sutures on the skull, is widely discussed in the following chapters, with a link between the applications of fractal analysis to the neuroanatomy and basic neurosciences to the clinical applications discussed in the third section.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"141-147"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-47606-8_6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

The introduction of fractal geometry to the neurosciences has been a major paradigm shift over the last decades as it has helped overcome approximations and limitations that occur when Euclidean and reductionist approaches are used to analyze neurons or the entire brain. Fractal geometry allows for quantitative analysis and description of the geometric complexity of the brain, from its single units to the neuronal networks.As illustrated in the second section of this book, fractal analysis provides a quantitative tool for the study of the morphology of brain cells (i.e., neurons and microglia) and its components (e.g., dendritic trees, synapses), as well as the brain structure itself (cortex, functional modules, neuronal networks). The self-similar logic which generates and shapes the different hierarchical systems of the brain and even some structures related to its "container," that is, the cranial sutures on the skull, is widely discussed in the following chapters, with a link between the applications of fractal analysis to the neuroanatomy and basic neurosciences to the clinical applications discussed in the third section.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经解剖学和基础神经科学中的分形:概述。
在过去的几十年中,分形几何学被引入神经科学领域,这是一个重大的范式转变,因为它有助于克服使用欧几里得和还原论方法分析神经元或整个大脑时出现的近似性和局限性。正如本书第二部分所述,分形分析为研究脑细胞(即神经元和小胶质细胞)的形态及其组成部分(如树突树、突触)以及大脑结构本身(皮层、功能模块、神经元网络)提供了定量工具。接下来的章节将广泛讨论分形分析在神经解剖学和基础神经科学中的应用与第三部分讨论的临床应用之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in neurobiology
Advances in neurobiology Neuroscience-Neurology
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
A Self-Similarity Logic May Shape the Organization of the Nervous System. Advances in Understanding Fractals in Affective and Anxiety Disorders. Analyzing Eye Paths Using Fractals. Box-Counting Fractal Analysis: A Primer for the Clinician. Clinical Sensitivity of Fractal Neurodynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1