首页 > 最新文献

Advances in neurobiology最新文献

英文 中文
Cognitive and Neural Representations of Fractals in Vision, Music, and Action. 视觉、音乐和动作中分形的认知和神经表征。
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_46
Mauricio de Jesus Dias Martins

The concept of fractal was popularized by Mandelbrot as a tool to tame the geometrical structure of objects with infinite hierarchical depth. The key aspect of fractals is the use of simple parsimonious rules and initial conditions, which when applied recursively can generate unbounded complexity. Fractals are structures ubiquitous in nature, being present in coast lines, bacteria colonies, trees, and physiological time series. However, within the field of cognitive science, the core question is not which phenomena can generate fractal structures, but whether human or animal minds can represent recursive processes, and if so in which domains. In this chapter, we will explore the cognitive and neural mechanisms underlying the representation of recursive hierarchical embedding. Language is the domain in which this capacity is best studied. Humans can generate an infinite array of hierarchically structured sentences, and this capacity distinguishes us from other species. However, recent research suggests that humans can represent similar structures in the domains of music, vision, and action and has provided additional cues as to how these capacities are cognitively implemented. Using a comparative approach, we will map the commonalities and differences across domains and offer a roadmap to understand the neurobiological implementation of fractal cognition.

分形的概念是由曼德布罗特提出的,作为一种工具,它可以驯服具有无限层次深度的物体的几何结构。分形的关键在于使用简单的准规则和初始条件,在递归应用时可以产生无限的复杂性。分形是自然界中无处不在的结构,存在于海岸线、细菌群落、树木和生理时间序列中。然而,在认知科学领域,核心问题并不是哪些现象可以产生分形结构,而是人类或动物的思维是否可以表现递归过程,如果可以,又是在哪些领域。在本章中,我们将探讨表征递归分层嵌入的认知和神经机制。语言是研究这种能力的最佳领域。人类可以生成无限多的层次结构句子,这种能力使我们有别于其他物种。然而,最近的研究表明,人类可以在音乐、视觉和行动等领域表现出类似的结构,并为这些能力如何在认知中实现提供了更多线索。我们将采用比较的方法,绘制各领域的共性和差异图,为理解分形认知的神经生物学实现提供一个路线图。
{"title":"Cognitive and Neural Representations of Fractals in Vision, Music, and Action.","authors":"Mauricio de Jesus Dias Martins","doi":"10.1007/978-3-031-47606-8_46","DOIUrl":"10.1007/978-3-031-47606-8_46","url":null,"abstract":"<p><p>The concept of fractal was popularized by Mandelbrot as a tool to tame the geometrical structure of objects with infinite hierarchical depth. The key aspect of fractals is the use of simple parsimonious rules and initial conditions, which when applied recursively can generate unbounded complexity. Fractals are structures ubiquitous in nature, being present in coast lines, bacteria colonies, trees, and physiological time series. However, within the field of cognitive science, the core question is not which phenomena can generate fractal structures, but whether human or animal minds can represent recursive processes, and if so in which domains. In this chapter, we will explore the cognitive and neural mechanisms underlying the representation of recursive hierarchical embedding. Language is the domain in which this capacity is best studied. Humans can generate an infinite array of hierarchically structured sentences, and this capacity distinguishes us from other species. However, recent research suggests that humans can represent similar structures in the domains of music, vision, and action and has provided additional cues as to how these capacities are cognitively implemented. Using a comparative approach, we will map the commonalities and differences across domains and offer a roadmap to understand the neurobiological implementation of fractal cognition.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal Dimension Studies of the Brain Shape in Aging and Neurodegenerative Diseases. 衰老和神经退行性疾病中大脑形状的分形维度研究。
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_17
Jennilee M Davidson, Luduan Zhang, Guang H Yue, Antonio Di Ieva

The fractal dimension is a morphometric measure that has been used to investigate the changes of brain shape complexity in aging and neurodegenerative diseases. This chapter reviews fractal dimension studies in aging and neurodegenerative disorders in the literature. Research has shown that the fractal dimension of the left cerebral hemisphere increases until adolescence and then decreases with aging, while the fractal dimension of the right hemisphere continues to increase until adulthood. Studies in neurodegenerative diseases demonstrated a decline in the fractal dimension of the gray matter and white matter in Alzheimer's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia. In multiple sclerosis, the white matter fractal dimension decreases, but conversely, the fractal dimension of the gray matter increases at specific stages of disease. There is also a decline in the gray matter fractal dimension in frontotemporal dementia and multiple system atrophy of the cerebellar type and in the white matter fractal dimension in epilepsy and stroke. Region-specific changes in fractal dimension have also been found in Huntington's disease and Parkinson's disease. Associations were found between the fractal dimension and clinical scores, showing the potential of the fractal dimension as a marker to monitor brain shape changes in normal or pathological processes and predict cognitive or motor function.

分形维度是一种形态计量方法,被用于研究衰老和神经退行性疾病中大脑形状复杂性的变化。本章回顾了有关衰老和神经退行性疾病的分形维度研究文献。研究表明,左侧大脑半球的分形维度在青春期之前一直在增加,然后随着年龄的增长而减少,而右侧大脑半球的分形维度在成年之前一直在增加。对神经退行性疾病的研究表明,在阿尔茨海默病、肌萎缩侧索硬化症和脊髓小脑共济失调症中,灰质和白质的分形维度会下降。在多发性硬化症中,白质的分形维度会下降,但相反,在疾病的特定阶段,灰质的分形维度会上升。额颞叶痴呆症和小脑型多系统萎缩的灰质分形维度也会下降,而癫痫和中风的白质分形维度也会下降。在亨廷顿氏病和帕金森氏病中也发现了分形维度的特定区域变化。分形维度与临床评分之间存在关联,表明分形维度有可能成为监测正常或病理过程中大脑形状变化以及预测认知或运动功能的标记。
{"title":"Fractal Dimension Studies of the Brain Shape in Aging and Neurodegenerative Diseases.","authors":"Jennilee M Davidson, Luduan Zhang, Guang H Yue, Antonio Di Ieva","doi":"10.1007/978-3-031-47606-8_17","DOIUrl":"10.1007/978-3-031-47606-8_17","url":null,"abstract":"<p><p>The fractal dimension is a morphometric measure that has been used to investigate the changes of brain shape complexity in aging and neurodegenerative diseases. This chapter reviews fractal dimension studies in aging and neurodegenerative disorders in the literature. Research has shown that the fractal dimension of the left cerebral hemisphere increases until adolescence and then decreases with aging, while the fractal dimension of the right hemisphere continues to increase until adulthood. Studies in neurodegenerative diseases demonstrated a decline in the fractal dimension of the gray matter and white matter in Alzheimer's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia. In multiple sclerosis, the white matter fractal dimension decreases, but conversely, the fractal dimension of the gray matter increases at specific stages of disease. There is also a decline in the gray matter fractal dimension in frontotemporal dementia and multiple system atrophy of the cerebellar type and in the white matter fractal dimension in epilepsy and stroke. Region-specific changes in fractal dimension have also been found in Huntington's disease and Parkinson's disease. Associations were found between the fractal dimension and clinical scores, showing the potential of the fractal dimension as a marker to monitor brain shape changes in normal or pathological processes and predict cognitive or motor function.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal Fluency: Processing of Fractal Stimuli Across Sight, Sound, and Touch. 分形流畅性:处理视觉、听觉和触觉的分形刺激。
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_45
Richard P Taylor, Catherine Viengkham, Julian H Smith, Conor Rowland, Saba Moslehi, Sabrina Stadlober, Anastasija Lesjak, Martin Lesjak, Branka Spehar

People are continually exposed to the rich complexity generated by the repetition of fractal patterns at different size scales. Fractals are prevalent in natural scenery and also in patterns generated by artists and mathematicians. In this chapter, we will investigate the powerful significance of fractals for the human senses. In particular, we propose that fractals with mid-range complexity play a unique role in our visual experiences because the visual system has adapted to these prevalent natural patterns. This adaptation is evident at multiple stages of the visual system, ranging from data acquisition by the eye to processing of this data in the higher visual areas of the brain. Based on these results, we will discuss a fluency model in which the visual system processes mid-complexity fractals with relative ease. This fluency optimizes the observer's capabilities (such as enhanced attention and pattern recognition) and generates an aesthetic experience accompanied by a reduction in the observer's physiological stress levels. In addition to reviewing people's responses to viewing fractals, we will compare these responses to recent research focused on fractal sounds and fractal surface textures. We will extend our fractal fluency model to allow for stimuli across multiple senses.

人们不断接触到不同大小尺度的分形图案重复所产生的丰富复杂性。分形普遍存在于自然景观以及艺术家和数学家创造的图案中。在本章中,我们将研究分形对人类感官的强大意义。我们特别提出,具有中等复杂程度的分形在我们的视觉体验中发挥着独特的作用,因为视觉系统已经适应了这些普遍存在的自然图案。这种适应体现在视觉系统的多个阶段,从眼睛获取数据到大脑高级视觉区域处理这些数据。基于这些结果,我们将讨论一个流畅模型,在这个模型中,视觉系统可以相对轻松地处理中等复杂度的分形。这种流畅性优化了观察者的能力(如增强注意力和模式识别能力),并产生了美学体验,同时降低了观察者的生理压力水平。除了回顾人们观看分形时的反应之外,我们还将把这些反应与最近对分形声音和分形表面纹理的研究进行比较。我们将扩展我们的分形流畅度模型,使其适用于多种感官刺激。
{"title":"Fractal Fluency: Processing of Fractal Stimuli Across Sight, Sound, and Touch.","authors":"Richard P Taylor, Catherine Viengkham, Julian H Smith, Conor Rowland, Saba Moslehi, Sabrina Stadlober, Anastasija Lesjak, Martin Lesjak, Branka Spehar","doi":"10.1007/978-3-031-47606-8_45","DOIUrl":"10.1007/978-3-031-47606-8_45","url":null,"abstract":"<p><p>People are continually exposed to the rich complexity generated by the repetition of fractal patterns at different size scales. Fractals are prevalent in natural scenery and also in patterns generated by artists and mathematicians. In this chapter, we will investigate the powerful significance of fractals for the human senses. In particular, we propose that fractals with mid-range complexity play a unique role in our visual experiences because the visual system has adapted to these prevalent natural patterns. This adaptation is evident at multiple stages of the visual system, ranging from data acquisition by the eye to processing of this data in the higher visual areas of the brain. Based on these results, we will discuss a fluency model in which the visual system processes mid-complexity fractals with relative ease. This fluency optimizes the observer's capabilities (such as enhanced attention and pattern recognition) and generates an aesthetic experience accompanied by a reduction in the observer's physiological stress levels. In addition to reviewing people's responses to viewing fractals, we will compare these responses to recent research focused on fractal sounds and fractal surface textures. We will extend our fractal fluency model to allow for stimuli across multiple senses.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal-Based Morphometrics of Glioblastoma. 基于分形的胶质母细胞瘤形态计量学
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_28
Lee Curtin

Morphometrics have been able to distinguish important features of glioblastoma from magnetic resonance imaging (MRI). Using morphometrics computed on segmentations of various imaging abnormalities, we show that the average and range of lacunarity and fractal dimension values across MRI slices can be prognostic for survival. We look at the repeatability of these metrics to multiple segmentations and how they are impacted by image resolution. We speak to the challenges to overcome before these metrics are included in clinical care, and the insight that they may provide.

形态计量学能够从磁共振成像(MRI)中区分胶质母细胞瘤的重要特征。通过对各种成像异常的分割计算形态计量学,我们发现核磁共振成像切片的裂隙度和分形维度值的平均值和范围可以预示存活率。我们研究了这些指标对多个分割的可重复性,以及它们如何受到图像分辨率的影响。我们讨论了在将这些指标纳入临床治疗之前需要克服的挑战,以及它们可能提供的启示。
{"title":"Fractal-Based Morphometrics of Glioblastoma.","authors":"Lee Curtin","doi":"10.1007/978-3-031-47606-8_28","DOIUrl":"10.1007/978-3-031-47606-8_28","url":null,"abstract":"<p><p>Morphometrics have been able to distinguish important features of glioblastoma from magnetic resonance imaging (MRI). Using morphometrics computed on segmentations of various imaging abnormalities, we show that the average and range of lacunarity and fractal dimension values across MRI slices can be prognostic for survival. We look at the repeatability of these metrics to multiple segmentations and how they are impacted by image resolution. We speak to the challenges to overcome before these metrics are included in clinical care, and the insight that they may provide.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Multiscaling of Parkinsonian Rest Tremor Signals and Their Classification. 论帕金森静息震颤信号的多尺度化及其分类
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_30
Lorenzo Livi

Self-similar stochastic processes and broad probability distributions are ubiquitous in nature and in many man-made systems. The brain is a particularly interesting example of (natural) complex system where those features play a pivotal role. In fact, the controversial yet experimentally validated "criticality hypothesis" explaining the functioning of the brain implies the presence of scaling laws for correlations. Recently, we have analyzed a collection of rest tremor velocity signals recorded from patients affected by Parkinson's disease, with the aim of determining and hence exploiting the presence of scaling laws. Our results show that multiple scaling laws are required in order to describe the dynamics of such signals, stressing the complexity of the underlying generating mechanism. We successively extracted numeric features by using the multifractal detrended fluctuation analysis procedure. We found that such features can be effective for discriminating classes of signals recorded in different experimental conditions. Notably, we show that the use of medication (L-DOPA) can be recognized with high accuracy.

自相似随机过程和广泛的概率分布在自然界和许多人造系统中无处不在。大脑是(自然)复杂系统中一个特别有趣的例子,在这个系统中,这些特征发挥着举足轻重的作用。事实上,解释大脑功能的 "临界假说 "备受争议,但却得到了实验验证,这意味着相关性存在缩放规律。最近,我们对帕金森病患者记录的静止震颤速度信号进行了分析,目的是确定并利用缩放规律的存在。我们的研究结果表明,要描述此类信号的动态变化,需要多种缩放规律,这强调了潜在产生机制的复杂性。我们利用多分形去趋势波动分析程序连续提取数字特征。我们发现,这些特征可以有效区分在不同实验条件下记录的信号类别。值得注意的是,我们发现药物(L-DOPA)的使用可以被高精度识别。
{"title":"On Multiscaling of Parkinsonian Rest Tremor Signals and Their Classification.","authors":"Lorenzo Livi","doi":"10.1007/978-3-031-47606-8_30","DOIUrl":"10.1007/978-3-031-47606-8_30","url":null,"abstract":"<p><p>Self-similar stochastic processes and broad probability distributions are ubiquitous in nature and in many man-made systems. The brain is a particularly interesting example of (natural) complex system where those features play a pivotal role. In fact, the controversial yet experimentally validated \"criticality hypothesis\" explaining the functioning of the brain implies the presence of scaling laws for correlations. Recently, we have analyzed a collection of rest tremor velocity signals recorded from patients affected by Parkinson's disease, with the aim of determining and hence exploiting the presence of scaling laws. Our results show that multiple scaling laws are required in order to describe the dynamics of such signals, stressing the complexity of the underlying generating mechanism. We successively extracted numeric features by using the multifractal detrended fluctuation analysis procedure. We found that such features can be effective for discriminating classes of signals recorded in different experimental conditions. Notably, we show that the use of medication (L-DOPA) can be recognized with high accuracy.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endogenous Opioids in the Homeostatic Regulation of Hunger, Satiety, and Hedonic Eating: Neurobiological Foundations. 内源性阿片类物质在饥饿、饱腹感和享乐性进食的体内平衡调节中的作用:神经生物学基础。
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-45493-6_16
Marcela Rodriguez Flores, Sylvana Stephano Zúñiga

This chapter (part one of a trilogy) summarizes the neurobiological foundations of endogenous opioids in the regulation of energy balance and eating behavior, dysregulation of which translates to maladaptive dietary responses in individuals with obesity and eating disorders, including anorexia, bulimia, and binge eating disorder. Knowledge of these neurobiological foundations is vital to researchers' and clinicians' understanding of pathophysiology as well as the science-based development of multidisciplinary diagnoses and treatments for obesity and eating disorders. We highlight mechanisms of endogenous opioids in both homeostatic and hedonic feeding behavior, review research on the dysregulation of food reward that plays a role in a wide array of obesity and disordered eating, and the clinical implications of neurobiological responses to food for current science-based treatments for obesity and eating disorders.

本章(三部曲之一)总结了内源性阿片类物质在调节能量平衡和进食行为方面的神经生物学基础,调节失调会转化为肥胖症和进食障碍(包括厌食症、贪食症和暴饮暴食症)患者的不良饮食反应。了解这些神经生物学基础对于研究人员和临床医生理解病理生理学以及以科学为基础制定肥胖和进食障碍的多学科诊断和治疗方法至关重要。我们将重点介绍内源性阿片类物质在平衡性和享乐性进食行为中的作用机制,回顾食物奖赏失调在各种肥胖症和进食障碍中的作用研究,以及对食物的神经生物学反应对当前基于科学的肥胖症和进食障碍治疗方法的临床意义。
{"title":"Endogenous Opioids in the Homeostatic Regulation of Hunger, Satiety, and Hedonic Eating: Neurobiological Foundations.","authors":"Marcela Rodriguez Flores, Sylvana Stephano Zúñiga","doi":"10.1007/978-3-031-45493-6_16","DOIUrl":"10.1007/978-3-031-45493-6_16","url":null,"abstract":"<p><p>This chapter (part one of a trilogy) summarizes the neurobiological foundations of endogenous opioids in the regulation of energy balance and eating behavior, dysregulation of which translates to maladaptive dietary responses in individuals with obesity and eating disorders, including anorexia, bulimia, and binge eating disorder. Knowledge of these neurobiological foundations is vital to researchers' and clinicians' understanding of pathophysiology as well as the science-based development of multidisciplinary diagnoses and treatments for obesity and eating disorders. We highlight mechanisms of endogenous opioids in both homeostatic and hedonic feeding behavior, review research on the dysregulation of food reward that plays a role in a wide array of obesity and disordered eating, and the clinical implications of neurobiological responses to food for current science-based treatments for obesity and eating disorders.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tenets and Methods of Fractal Analysis (1/f Noise). 分形分析的原理和方法(1/f 噪声)。
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_3
Tatjana Stadnitski

This chapter deals with the methodical challenges confronting researchers of the fractal phenomenon known as pink or 1/f noise. This chapter introduces concepts and statistical techniques for identifying fractal patterns in empirical time series. It defines some basic statistical terms, describes two essential characteristics of pink noise (self-similarity and long memory), and outlines four parameters representing the theoretical properties of fractal processes: the Hurst coefficient (H), the scaling exponent (α), the power exponent (β), and the fractional differencing parameter (d) of the ARFIMA (autoregressive fractionally integrated moving average) method. Then, it compares and evaluates different approaches to estimating fractal parameters from observed data and outlines the advantages, disadvantages, and constraints of some popular estimators. The final section of this chapter answers the questions: Which strategy is appropriate for the identification of fractal noise in empirical settings and how can it be applied to the data?

本章讨论研究粉红或 1/f 噪声这种分形现象的人员所面临的方法论挑战。本章介绍了在经验时间序列中识别分形模式的概念和统计技术。它定义了一些基本统计术语,描述了粉红噪声的两个基本特征(自相似性和长记忆),并概述了代表分形过程理论特性的四个参数:赫斯特系数(H)、缩放指数(α)、幂指数(β)和 ARFIMA(自回归分形积分移动平均)方法的分形差分参数(d)。然后,本章比较并评估了从观测数据中估算分形参数的不同方法,并概述了一些常用估算器的优缺点和限制条件。本章最后一节回答了以下问题:哪种策略适合在经验环境中识别分形噪声,以及如何将其应用于数据?
{"title":"Tenets and Methods of Fractal Analysis (1/f Noise).","authors":"Tatjana Stadnitski","doi":"10.1007/978-3-031-47606-8_3","DOIUrl":"10.1007/978-3-031-47606-8_3","url":null,"abstract":"<p><p>This chapter deals with the methodical challenges confronting researchers of the fractal phenomenon known as pink or 1/f noise. This chapter introduces concepts and statistical techniques for identifying fractal patterns in empirical time series. It defines some basic statistical terms, describes two essential characteristics of pink noise (self-similarity and long memory), and outlines four parameters representing the theoretical properties of fractal processes: the Hurst coefficient (H), the scaling exponent (α), the power exponent (β), and the fractional differencing parameter (d) of the ARFIMA (autoregressive fractionally integrated moving average) method. Then, it compares and evaluates different approaches to estimating fractal parameters from observed data and outlines the advantages, disadvantages, and constraints of some popular estimators. The final section of this chapter answers the questions: Which strategy is appropriate for the identification of fractal noise in empirical settings and how can it be applied to the data?</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General Pathophysiology of Microglia. 小胶质细胞的一般病理生理学
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_1
Marie-Ève Tremblay, Alexei Verkhratsky

Microglia, which are the resident innate immune cells of the central nervous system (CNS), have emerged as critical for maintaining health by not only ensuring proper development, activity, and plasticity of neurones and glial cells but also maintaining and restoring homeostasis when faced with various challenges across the lifespan. This chapter is dedicated to the current understanding of microglia, including their beneficial versus detrimental roles, which are highly complex, rely on various microglial states, and intimately depend on their spatiotemporal context. Microglia are first contextualized within the perspective of finding therapeutic strategies to cure diseases in the twenty-first century-the overall functions of neuroglia with relation one to another and to neurones, and their shared CNS environment. A historical framework is provided, and the main principles of glial neuropathology are enunciated. The current view of microglial nomenclature is then covered, notably by discussing the rejected concepts of microglial activation, their polarisation into M1 and M2 phenotypes, and neuroinflammation. The transformation of the microglial population through the addition, migration, and elimination of individual members, as well as their dynamic metamorphosis between a wide variety of structural and functional states, based on the experienced physiological and pathological stimuli, is subsequently discussed. Lastly, the perspective of microglia as a cell type endowed with a health status determining their outcomes on adaptive CNS plasticity as well as disease pathology is proposed for twenty-first-century approaches to disease prevention and treatment.

小胶质细胞是中枢神经系统(CNS)的常驻先天性免疫细胞,不仅能确保神经元和胶质细胞的正常发育、活动和可塑性,还能在整个生命周期中面临各种挑战时维持和恢复平衡,因此已成为维持健康的关键。本章主要介绍目前对小胶质细胞的认识,包括它们的有益和有害作用,这些作用非常复杂,依赖于各种小胶质细胞状态,并密切依赖于它们的时空背景。小胶质细胞的整体功能与神经元之间的关系以及它们共同的中枢神经系统环境息息相关。本书提供了一个历史框架,并阐述了神经胶质细胞病理学的主要原则。然后介绍了当前的小胶质细胞命名法,特别是讨论了小胶质细胞活化、其极化为 M1 和 M2 表型以及神经炎症等被否定的概念。随后讨论了小胶质细胞群体通过个体成员的增加、迁移和淘汰而发生的转变,以及它们根据所经历的生理和病理刺激在各种结构和功能状态之间的动态蜕变。最后,小胶质细胞作为一种细胞类型,其健康状况决定了它们对中枢神经系统适应性可塑性和疾病病理学的结果,这一观点为二十一世纪的疾病预防和治疗方法提供了建议。
{"title":"General Pathophysiology of Microglia.","authors":"Marie-Ève Tremblay, Alexei Verkhratsky","doi":"10.1007/978-3-031-55529-9_1","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_1","url":null,"abstract":"<p><p>Microglia, which are the resident innate immune cells of the central nervous system (CNS), have emerged as critical for maintaining health by not only ensuring proper development, activity, and plasticity of neurones and glial cells but also maintaining and restoring homeostasis when faced with various challenges across the lifespan. This chapter is dedicated to the current understanding of microglia, including their beneficial versus detrimental roles, which are highly complex, rely on various microglial states, and intimately depend on their spatiotemporal context. Microglia are first contextualized within the perspective of finding therapeutic strategies to cure diseases in the twenty-first century-the overall functions of neuroglia with relation one to another and to neurones, and their shared CNS environment. A historical framework is provided, and the main principles of glial neuropathology are enunciated. The current view of microglial nomenclature is then covered, notably by discussing the rejected concepts of microglial activation, their polarisation into M1 and M2 phenotypes, and neuroinflammation. The transformation of the microglial population through the addition, migration, and elimination of individual members, as well as their dynamic metamorphosis between a wide variety of structural and functional states, based on the experienced physiological and pathological stimuli, is subsequently discussed. Lastly, the perspective of microglia as a cell type endowed with a health status determining their outcomes on adaptive CNS plasticity as well as disease pathology is proposed for twenty-first-century approaches to disease prevention and treatment.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synapse Regulation. 突触调节
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_11
Haley A Vecchiarelli, Luana Tenorio Lopes, Rosa C Paolicelli, Beth Stevens, Hiroaki Wake, Marie-Ève Tremblay

Microglia are the resident immune cells of the brain. As such, they rapidly detect changes in normal brain homeostasis and accurately respond by fine-tuning in a tightly regulated manner their morphology, gene expression, and functional behavior. Depending on the nature of these changes, microglia can thicken and retract their processes, proliferate and migrate, release numerous signaling factors and compounds influencing neuronal physiology (e.g., cytokines and trophic factors), in addition to secreting proteases able to transform the extracellular matrix, and phagocytosing various types of cellular debris, etc. Because microglia also transform rapidly (on a time scale of minutes) during experimental procedures, studying these very special cells requires methods that are specifically non-invasive. The development of such methods has provided unprecedented insights into the roles of microglia during normal physiological conditions. In particular, transcranial two-photon in vivo imaging revealed that presumably "resting" microglia continuously survey the brain parenchyma with their highly motile processes, in addition to modulating their structural and functional interactions with neuronal circuits along the changes in neuronal activity and behavioral experience occurring throughout the lifespan. In this chapter, we will describe how surveillant microglia interact with synaptic elements and modulate the number, maturation, function, and plasticity of synapses in the healthy developing, mature, and aging brain, with consequences on neuronal activity, learning and memory, and the behavioral outcome.

小胶质细胞是大脑的常驻免疫细胞。因此,它们能迅速检测到大脑正常稳态的变化,并通过严格调节其形态、基因表达和功能行为来做出准确反应。根据这些变化的性质,小胶质细胞可以增厚和收缩其过程、增殖和迁移、释放影响神经元生理的多种信号因子和化合物(如细胞因子和营养因子),此外还能分泌蛋白酶以改变细胞外基质,并吞噬各种细胞碎片等。由于小胶质细胞在实验过程中也会迅速转化(几分钟的时间),因此研究这些非常特殊的细胞需要专门的非侵入性方法。这类方法的开发为了解小胶质细胞在正常生理条件下的作用提供了前所未有的视角。特别是,经颅双光子体内成像发现,假定 "静息 "的小胶质细胞除了随着整个生命周期中神经元活动和行为体验的变化而调节其与神经元回路的结构和功能相互作用外,还以其高度运动的过程不断勘测大脑实质。在本章中,我们将描述在健康发育、成熟和衰老的大脑中,监视型小胶质细胞如何与突触元件相互作用,并调节突触的数量、成熟度、功能和可塑性,从而对神经元活动、学习和记忆以及行为结果产生影响。
{"title":"Synapse Regulation.","authors":"Haley A Vecchiarelli, Luana Tenorio Lopes, Rosa C Paolicelli, Beth Stevens, Hiroaki Wake, Marie-Ève Tremblay","doi":"10.1007/978-3-031-55529-9_11","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_11","url":null,"abstract":"<p><p>Microglia are the resident immune cells of the brain. As such, they rapidly detect changes in normal brain homeostasis and accurately respond by fine-tuning in a tightly regulated manner their morphology, gene expression, and functional behavior. Depending on the nature of these changes, microglia can thicken and retract their processes, proliferate and migrate, release numerous signaling factors and compounds influencing neuronal physiology (e.g., cytokines and trophic factors), in addition to secreting proteases able to transform the extracellular matrix, and phagocytosing various types of cellular debris, etc. Because microglia also transform rapidly (on a time scale of minutes) during experimental procedures, studying these very special cells requires methods that are specifically non-invasive. The development of such methods has provided unprecedented insights into the roles of microglia during normal physiological conditions. In particular, transcranial two-photon in vivo imaging revealed that presumably \"resting\" microglia continuously survey the brain parenchyma with their highly motile processes, in addition to modulating their structural and functional interactions with neuronal circuits along the changes in neuronal activity and behavioral experience occurring throughout the lifespan. In this chapter, we will describe how surveillant microglia interact with synaptic elements and modulate the number, maturation, function, and plasticity of synapses in the healthy developing, mature, and aging brain, with consequences on neuronal activity, learning and memory, and the behavioral outcome.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aging Microglia and Their Impact in the Nervous System. 老化的小胶质细胞及其对神经系统的影响
Q3 Neuroscience Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_21
Rommy von Bernhardi, Jaime Eugenín

Aging is the greatest risk factor for neurodegenerative diseases. Microglia are the resident immune cells in the central nervous system (CNS), playing key roles in its normal functioning, and as mediators for age-dependent changes of the CNS, condition at which they generate a hostile environment for neurons. Transforming Growth Factor β1 (TGFβ1) is a regulatory cytokine involved in immuneregulation and neuroprotection, affecting glial cell inflammatory activation, neuronal survival, and function. TGFβ1 signaling undergoes age-dependent changes affecting the regulation of microglial cells and can contribute to the pathophysiology of neurodegenerative diseases. This chapter focuses on assessing the role of age-related changes on the regulation of microglial cells and their impact on neuroinflammation and neuronal function, for understanding age-dependent changes of the nervous system.

衰老是神经退行性疾病的最大风险因素。小胶质细胞是中枢神经系统(CNS)中的常驻免疫细胞,在中枢神经系统的正常功能中发挥着关键作用,同时也是中枢神经系统随年龄变化的介质,在这种情况下,它们会对神经元产生不利的环境。转化生长因子β1(TGFβ1)是一种调节细胞因子,参与免疫调节和神经保护,影响神经胶质细胞的炎症激活、神经元存活和功能。TGFβ1 信号传导会发生年龄依赖性变化,影响小胶质细胞的调控,并可能导致神经退行性疾病的病理生理学。本章重点评估与年龄有关的变化对小胶质细胞调控的作用及其对神经炎症和神经元功能的影响,以了解神经系统的年龄依赖性变化。
{"title":"Aging Microglia and Their Impact in the Nervous System.","authors":"Rommy von Bernhardi, Jaime Eugenín","doi":"10.1007/978-3-031-55529-9_21","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_21","url":null,"abstract":"<p><p>Aging is the greatest risk factor for neurodegenerative diseases. Microglia are the resident immune cells in the central nervous system (CNS), playing key roles in its normal functioning, and as mediators for age-dependent changes of the CNS, condition at which they generate a hostile environment for neurons. Transforming Growth Factor β1 (TGFβ1) is a regulatory cytokine involved in immuneregulation and neuroprotection, affecting glial cell inflammatory activation, neuronal survival, and function. TGFβ1 signaling undergoes age-dependent changes affecting the regulation of microglial cells and can contribute to the pathophysiology of neurodegenerative diseases. This chapter focuses on assessing the role of age-related changes on the regulation of microglial cells and their impact on neuroinflammation and neuronal function, for understanding age-dependent changes of the nervous system.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in neurobiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1