{"title":"Multiple cancer cell types release LIF and Gal3 to hijack neural signals","authors":"Qun Xu, Ying Cao, Fanni Kong, Jiaqi Liu, Xin Chen, Yifei Zhao, Chin-Hui Lai, Xin Zhou, Hao Hu, Wei Fu, Jian Chen, Jing Yang","doi":"10.1038/s41422-024-00946-z","DOIUrl":null,"url":null,"abstract":"Neural signals can significantly influence cancer prognosis. However, how cancer cells may proactively modulate the nervous system to benefit their own survival is incompletely understood. In this study, we report an overlapping pattern of brain responses, including that in the paraventricular nucleus of the hypothalamus, in multiple mouse models of peripheral cancers. A multi-omic screening then identifies leukemia inhibitory factor (LIF) and galectin-3 (Gal3) as the key cytokines released by these cancer cell types to trigger brain activation. Importantly, increased plasma levels of these two cytokines are observed in patients with different cancers. We further demonstrate that pharmacologic or genetic blockage of cancer cell-derived LIF or Gal3 signaling abolishes the brain responses and strongly inhibits tumor growth. In addition, ablation of peripheral sympathetic actions can similarly restore antitumor immunity. These results have elucidated a novel, shared mechanism of multiple cancer cell types hijacking the nervous system to promote tumor progression.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":null,"pages":null},"PeriodicalIF":28.1000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41422-024-00946-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Research","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41422-024-00946-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neural signals can significantly influence cancer prognosis. However, how cancer cells may proactively modulate the nervous system to benefit their own survival is incompletely understood. In this study, we report an overlapping pattern of brain responses, including that in the paraventricular nucleus of the hypothalamus, in multiple mouse models of peripheral cancers. A multi-omic screening then identifies leukemia inhibitory factor (LIF) and galectin-3 (Gal3) as the key cytokines released by these cancer cell types to trigger brain activation. Importantly, increased plasma levels of these two cytokines are observed in patients with different cancers. We further demonstrate that pharmacologic or genetic blockage of cancer cell-derived LIF or Gal3 signaling abolishes the brain responses and strongly inhibits tumor growth. In addition, ablation of peripheral sympathetic actions can similarly restore antitumor immunity. These results have elucidated a novel, shared mechanism of multiple cancer cell types hijacking the nervous system to promote tumor progression.
期刊介绍:
Cell Research (CR) is an international journal published by Springer Nature in partnership with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). It focuses on publishing original research articles and reviews in various areas of life sciences, particularly those related to molecular and cell biology. The journal covers a broad range of topics including cell growth, differentiation, and apoptosis; signal transduction; stem cell biology and development; chromatin, epigenetics, and transcription; RNA biology; structural and molecular biology; cancer biology and metabolism; immunity and molecular pathogenesis; molecular and cellular neuroscience; plant molecular and cell biology; and omics, system biology, and synthetic biology. CR is recognized as China's best international journal in life sciences and is part of Springer Nature's prestigious family of Molecular Cell Biology journals.