首页 > 最新文献

Cell Research最新文献

英文 中文
Lysosomal EGFR acts as a Rheb-GEF independent of its kinase activity to activate mTORC1 溶酶体表皮生长因子受体作为独立于其激酶活性的 Rheb-GEF 激活 mTORC1
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-21 DOI: 10.1038/s41422-025-01110-x
Xiaobo He, Qiu-Xia Wang, Denghui Wei, Yujie Lin, Xia Zhang, Yuanzhong Wu, Xuexia Qian, Zhihao Lin, Beibei Xiao, Qinxue Wu, Zhen Wang, Fengtao Zhou, Zhihao Wei, Jingxuan Wang, Run Gong, Ruhua Zhang, Qingling Zhang, Ke Ding, Song Gao, Tiebang Kang

Oncogenic mutations in EGFR often result in EGF-independent constitutive activation and aberrant trafficking and are associated with several human malignancies, including non-small cell lung cancer. A major consequence of EGFR mutations is the activation of the mechanistic target of rapamycin complex 1 (mTORC1), which requires EGFR kinase activity and downstream PI3K/AKT signaling, resulting in increased cell proliferation. However, recent studies have elucidated kinase-independent roles of EGFR in cell survival and cancer progression. Here, we report a cis mTORC1 activation function of EGFR that is independent of its kinase activity. Our results reveal that lysosomal localization of EGFR is critical to mTORC1 activation, where EGFR physically binds Rheb, acting as a guanine exchange factor (GEF) for Rheb, with its Glu804 serving as a potential glutamic finger. Genetic knock-in of EGFR-E804K in cells reduces the level of GTP-bound Rheb, and significantly suppresses mTORC1 activation, cell proliferation and tumor growth. Different tyrosine kinase inhibitors exhibit distinct effects on EGFR-induced mTORC1 activation, with afatinib, which additionally blocks EGFR’s GEF activity, causing a much greater suppression of mTORC1 activation and cell growth, and erlotinib, which targets only kinase activity, resulting in only a slight decrease. Moreover, a novel small molecule, BIEGi-1, was designed to target both the Rheb-GEF and kinase activities of EGFR, and shows a strong inhibitory effect on the viability of cells harboring EGFR mutants. These findings unveil a fundamental event in cell growth and suggest a promising strategy against cancers with EGFR mutations.

{"title":"Lysosomal EGFR acts as a Rheb-GEF independent of its kinase activity to activate mTORC1","authors":"Xiaobo He, Qiu-Xia Wang, Denghui Wei, Yujie Lin, Xia Zhang, Yuanzhong Wu, Xuexia Qian, Zhihao Lin, Beibei Xiao, Qinxue Wu, Zhen Wang, Fengtao Zhou, Zhihao Wei, Jingxuan Wang, Run Gong, Ruhua Zhang, Qingling Zhang, Ke Ding, Song Gao, Tiebang Kang","doi":"10.1038/s41422-025-01110-x","DOIUrl":"https://doi.org/10.1038/s41422-025-01110-x","url":null,"abstract":"<p>Oncogenic mutations in EGFR often result in EGF-independent constitutive activation and aberrant trafficking and are associated with several human malignancies, including non-small cell lung cancer. A major consequence of EGFR mutations is the activation of the mechanistic target of rapamycin complex 1 (mTORC1), which requires EGFR kinase activity and downstream PI3K/AKT signaling, resulting in increased cell proliferation. However, recent studies have elucidated kinase-independent roles of EGFR in cell survival and cancer progression. Here, we report a <i>cis</i> mTORC1 activation function of EGFR that is independent of its kinase activity. Our results reveal that lysosomal localization of EGFR is critical to mTORC1 activation, where EGFR physically binds Rheb, acting as a guanine exchange factor (GEF) for Rheb, with its Glu804 serving as a potential glutamic finger. Genetic knock-in of EGFR-E804K in cells reduces the level of GTP-bound Rheb, and significantly suppresses mTORC1 activation, cell proliferation and tumor growth. Different tyrosine kinase inhibitors exhibit distinct effects on EGFR-induced mTORC1 activation, with afatinib, which additionally blocks EGFR’s GEF activity, causing a much greater suppression of mTORC1 activation and cell growth, and erlotinib, which targets only kinase activity, resulting in only a slight decrease. Moreover, a novel small molecule, BIEGi-1, was designed to target both the Rheb-GEF and kinase activities of EGFR, and shows a strong inhibitory effect on the viability of cells harboring EGFR mutants. These findings unveil a fundamental event in cell growth and suggest a promising strategy against cancers with EGFR mutations.</p>","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"47 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding NLRP3: Phase separation enters the scene
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-21 DOI: 10.1038/s41422-025-01120-9
Niklas A. Schmacke, Veit Hornung

Activation of the innate immune sensor protein NLRP3 leads to the assembly of a multiprotein complex called the inflammasome, causing cell death and inflammation. In a recent paper in Cell Research, Zou et al. now provide evidence that palmitoylation of NLRP3 promotes its liquid–liquid phase separation, driving inflammasome activation.

{"title":"Decoding NLRP3: Phase separation enters the scene","authors":"Niklas A. Schmacke, Veit Hornung","doi":"10.1038/s41422-025-01120-9","DOIUrl":"https://doi.org/10.1038/s41422-025-01120-9","url":null,"abstract":"<p><b>Activation of the innate immune sensor protein NLRP3 leads to the assembly of a multiprotein complex called the inflammasome, causing cell death and inflammation. In a recent paper in</b> <b><i>Cell Research</i></b>, <b>Zou et al. now provide evidence that palmitoylation of NLRP3 promotes its liquid–liquid phase separation, driving inflammasome activation</b>.</p>","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"30 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gasdermin D pores hitch a ride: extracellular vesicles spread pyroptosis
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-21 DOI: 10.1038/s41422-025-01109-4
Gang Du, Hao Wu

Pyroptosis is a highly immunogenic cell death due to the release of damage-associated molecular patterns and pro-inflammatory cytokines such as IL-1β and IL-18. A recent study published in Cell by Wright and colleagues uncovered a novel mechanism in which extracellular vesicles released from pyroptotic cells serve as carriers of functional gasdermin D pores to propagate pyroptosis to bystander cells, providing valuable insights into the process of bystander cell death and opening up potential therapeutic avenues.

{"title":"Gasdermin D pores hitch a ride: extracellular vesicles spread pyroptosis","authors":"Gang Du, Hao Wu","doi":"10.1038/s41422-025-01109-4","DOIUrl":"https://doi.org/10.1038/s41422-025-01109-4","url":null,"abstract":"<p><b>Pyroptosis is a highly immunogenic cell death due to the release of damage-associated molecular patterns and pro-inflammatory cytokines such as IL-1β and IL-18. A recent study published in</b> <b><i>Cell</i></b> <b>by Wright and colleagues uncovered a novel mechanism in which extracellular vesicles released from pyroptotic cells serve as carriers of functional gasdermin D pores to propagate pyroptosis to bystander cells, providing valuable insights into the process of bystander cell death and opening up potential therapeutic avenues.</b></p>","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"6 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orchestrating NTSR1 signaling from the interface
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-21 DOI: 10.1038/s41422-025-01121-8
Xianglin Huang, Brian E. Krumm, Bryan L. Roth

Biased allosteric modulators provide great therapeutic potential by selectively directing signal bias in the presence of endogenous ligand under (patho)physiological conditions. In a recent Cell Research paper, Sun et al. revealed the structural mechanisms underlying the biased allosteric modulation exerted by SBI-533 directly at the neurotensin receptor 1–β-arrestin1 interface.

{"title":"Orchestrating NTSR1 signaling from the interface","authors":"Xianglin Huang, Brian E. Krumm, Bryan L. Roth","doi":"10.1038/s41422-025-01121-8","DOIUrl":"https://doi.org/10.1038/s41422-025-01121-8","url":null,"abstract":"<p><b>Biased allosteric modulators provide great therapeutic potential by selectively directing signal bias in the presence of endogenous ligand under (patho)physiological conditions. In a recent</b> <b><i>Cell Research</i></b> <b>paper, Sun et al. revealed the structural mechanisms underlying the biased allosteric modulation exerted by SBI-533 directly at the neurotensin receptor 1–β-arrestin1 interface</b>.</p>","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"268 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spliceosome-associated quality control
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-21 DOI: 10.1038/s41422-025-01118-3
Nikita Sharaev, Jiangfeng Zhao, Wojciech P. Galej

Intron removal from pre-mRNAs is one of the key steps in gene expression, but how it is achieved with high fidelity remains a subject of active research. Recent structural studies provide new insights into the spliceosome-mediated splice site proofreading mechanism.

{"title":"Spliceosome-associated quality control","authors":"Nikita Sharaev, Jiangfeng Zhao, Wojciech P. Galej","doi":"10.1038/s41422-025-01118-3","DOIUrl":"https://doi.org/10.1038/s41422-025-01118-3","url":null,"abstract":"<p><b>Intron removal from pre-mRNAs is one of the key steps in gene expression, but how it is achieved with high fidelity remains a subject of active research. Recent structural studies provide new insights into the spliceosome-mediated splice site proofreading mechanism</b>.</p>","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"49 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic insights into RNA cleavage by human Argonaute2–siRNA complex
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-16 DOI: 10.1038/s41422-025-01114-7
Zhenzhen Li, Qikui Xu, Yan Zhang, Jing Zhong, Tianxiang Zhang, Junchao Xue, Shuxian Liu, Haishan Gao, Z. Z. Zhao Zhang, Jianping Wu, En-Zhi Shen

In animals, AGO-clade Argonaute proteins utilize small interfering RNAs (siRNAs) as guides to recognize target with complete complementarity, resulting in target RNA cleavage that is a critical step for target silencing. These proteins feature a constricted nucleic acid-binding channel that limits base pairing between the guide and target beyond the seed region. How the AGO–siRNA complexes overcome this structural limitation and achieve efficient target cleavage remains unclear. We performed cryo-electron microscopy of human AGO–siRNA complexes bound to target RNAs of increasing lengths to examine the conformational changes associated with target recognition and cleavage. Initially, conformational transition propagates from the opening of the PAZ domain and extends through a repositioning of the PIWI–L1–N domain toward the binding channel, facilitating the capture of siRNA–target duplex. Subsequent extension of base pairing drives the downward movement of the PIWI–L1–N domain to enable catalytic activation. Finally, further base pairing toward the 3′ end of siRNA destabilizes the PAZ–N domain, resulting in a “uni-lobed” architecture, which might facilitate the multi-turnover action of the AGO–siRNA enzyme complex. In contrast to PIWI-clade Argonautes, the “uni-lobed” structure of the AGO complex makes multiple contacts with the target in the central region of the siRNA–target duplex, positioning it within the catalytic site. Our findings shed light on the stepwise mechanisms by which the AGO–siRNA complex executes target RNA cleavage and offer insights into the distinct operational modalities of AGO and PIWI proteins in achieving such cleavage.

{"title":"Mechanistic insights into RNA cleavage by human Argonaute2–siRNA complex","authors":"Zhenzhen Li, Qikui Xu, Yan Zhang, Jing Zhong, Tianxiang Zhang, Junchao Xue, Shuxian Liu, Haishan Gao, Z. Z. Zhao Zhang, Jianping Wu, En-Zhi Shen","doi":"10.1038/s41422-025-01114-7","DOIUrl":"https://doi.org/10.1038/s41422-025-01114-7","url":null,"abstract":"<p>In animals, AGO-clade Argonaute proteins utilize small interfering RNAs (siRNAs) as guides to recognize target with complete complementarity, resulting in target RNA cleavage that is a critical step for target silencing. These proteins feature a constricted nucleic acid-binding channel that limits base pairing between the guide and target beyond the seed region. How the AGO–siRNA complexes overcome this structural limitation and achieve efficient target cleavage remains unclear. We performed cryo-electron microscopy of human AGO–siRNA complexes bound to target RNAs of increasing lengths to examine the conformational changes associated with target recognition and cleavage. Initially, conformational transition propagates from the opening of the PAZ domain and extends through a repositioning of the PIWI–L1–N domain toward the binding channel, facilitating the capture of siRNA–target duplex. Subsequent extension of base pairing drives the downward movement of the PIWI–L1–N domain to enable catalytic activation. Finally, further base pairing toward the 3′ end of siRNA destabilizes the PAZ–N domain, resulting in a “uni-lobed” architecture, which might facilitate the multi-turnover action of the AGO–siRNA enzyme complex. In contrast to PIWI-clade Argonautes, the “uni-lobed” structure of the AGO complex makes multiple contacts with the target in the central region of the siRNA–target duplex, positioning it within the catalytic site. Our findings shed light on the stepwise mechanisms by which the AGO–siRNA complex executes target RNA cleavage and offer insights into the distinct operational modalities of AGO and PIWI proteins in achieving such cleavage.</p>","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"16 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143836746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond peptide targeting sequences: machine learning of cellular condensate localization
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-14 DOI: 10.1038/s41422-025-01115-6
Jonathon A. Ditlev, Julie D. Forman-Kay

Proteins within cells must navigate complex intracellular environments to co-localize with partners and regulate functional cellular organization. In a recentScience paper, Kilgore et al. report the development of ProtGPS, a machine learning-trained predictor of protein localization within biomolecular condensates in cells that can be used to predict the ability of disease-linked mutations to dysregulate protein localization to biomolecular condensates.

{"title":"Beyond peptide targeting sequences: machine learning of cellular condensate localization","authors":"Jonathon A. Ditlev, Julie D. Forman-Kay","doi":"10.1038/s41422-025-01115-6","DOIUrl":"https://doi.org/10.1038/s41422-025-01115-6","url":null,"abstract":"<p><b>Proteins within cells must navigate complex intracellular environments to co-localize with partners and regulate functional cellular organization. In a recent</b><b><i>Science</i></b> <b>paper, Kilgore et al. report the development of ProtGPS, a machine learning-trained predictor of protein localization within biomolecular condensates in cells that can be used to predict the ability of disease-linked mutations to dysregulate protein localization to biomolecular condensates.</b></p>","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"27 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143827374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective CDK4 inhibition holds promise for breast cancer
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-14 DOI: 10.1038/s41422-025-01117-4
Manuel Beltrán-Visiedo, Rebecca M. Shulman, Lorenzo Galluzzi

Although CDK4/6 inhibitors have revolutionized the management of patients with locally advanced/metastatic HR+HER2 breast cancer, hematological side effects, notably neutropenia, have been challenging to circumvent. A highly selective CDK4 inhibitor has recently been shown to cause limited hematological toxicity in preclinical breast cancer models, hence enabling dose escalation in support of superior tumor control.

{"title":"Selective CDK4 inhibition holds promise for breast cancer","authors":"Manuel Beltrán-Visiedo, Rebecca M. Shulman, Lorenzo Galluzzi","doi":"10.1038/s41422-025-01117-4","DOIUrl":"https://doi.org/10.1038/s41422-025-01117-4","url":null,"abstract":"<p><b>Although CDK4/6 inhibitors have revolutionized the management of patients with locally advanced/metastatic HR</b><sup><b>+</b></sup><b>HER2</b><sup><i>−</i></sup> <b>breast cancer, hematological side effects, notably neutropenia, have been challenging to circumvent. A highly selective CDK4 inhibitor has recently been shown to cause limited hematological toxicity in preclinical breast cancer models, hence enabling dose escalation in support of superior tumor control</b>.</p>","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"108 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143827135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase separation paints Xi with Xist
IF 44.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-14 DOI: 10.1038/s41422-025-01116-5
Thomas C. T. Michaels, Anton Wutz

In a recent study, Ding et al. investigated the role of hnRNPK phase separation in mammalian dosage compensation. The study stands out by linking biophysical and biochemical measurements with genetic and cell biological experimentation, providing wide-ranging evidence for specific mechanistic aspects of X chromosome inactivation, while expanding the potential repertoire for phase separation in biology.

在最近的一项研究中,Ding 等人研究了 hnRNPK 相分离在哺乳动物剂量补偿中的作用。该研究将生物物理和生物化学测量与遗传和细胞生物学实验联系起来,为 X 染色体失活的特定机理方面提供了广泛的证据,同时扩大了相分离在生物学中的潜在应用范围。
{"title":"Phase separation paints Xi with Xist","authors":"Thomas C. T. Michaels, Anton Wutz","doi":"10.1038/s41422-025-01116-5","DOIUrl":"https://doi.org/10.1038/s41422-025-01116-5","url":null,"abstract":"<p><b>In a recent study, Ding et al. investigated the role of hnRNPK phase separation in mammalian dosage compensation. The study stands out by linking biophysical and biochemical measurements with genetic and cell biological experimentation, providing wide-ranging evidence for specific mechanistic aspects of X chromosome inactivation, while expanding the potential repertoire for phase separation in biology</b>.</p>","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"49 1","pages":""},"PeriodicalIF":44.1,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143827375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyroptosis: molecular mechanisms and roles in disease.
IF 28.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-04-03 DOI: 10.1038/s41422-025-01107-6
Petr Broz

Pyroptosis is a type of programmed necrosis triggered by the detection of pathogens or endogenous danger signals in the cytosol. Pyroptotic cells exhibit a swollen, enlarged morphology and ultimately undergo lysis, releasing their cytosolic contents - such as proteins, metabolites, and nucleic acids - into the extracellular space. These molecules can function as danger-associated molecular patterns (DAMPs), triggering inflammation when detected by neighboring cells. Mechanistically, pyroptosis is initiated by members of the gasdermin protein family, which were identified a decade ago as pore-forming executors of cell death. Mammalian gasdermins consist of a cytotoxic N-terminal domain, a flexible linker, and a C-terminal regulatory domain that binds to and inhibits the N-terminus. Proteolytic cleavage within the linker releases the N-terminal domain, enabling it to target various cellular membranes, including nuclear, mitochondrial, and plasma membranes, where it forms large transmembrane pores. Gasdermin pores in the plasma membrane disrupt the electrochemical gradient, leading to water influx and cell swelling. Their formation also activates the membrane protein ninjurin-1 (NINJ1), which oligomerizes to drive complete plasma membrane rupture and the release of large DAMPs. Since their discovery as pore-forming proteins, gasdermins have been linked to pyroptosis not only in host defense but also in various pathological conditions. This review explores the history of pyroptosis, recent insights into gasdermin activation, the cellular consequences of pore formation, and the physiological roles of pyroptosis.

{"title":"Pyroptosis: molecular mechanisms and roles in disease.","authors":"Petr Broz","doi":"10.1038/s41422-025-01107-6","DOIUrl":"10.1038/s41422-025-01107-6","url":null,"abstract":"<p><p>Pyroptosis is a type of programmed necrosis triggered by the detection of pathogens or endogenous danger signals in the cytosol. Pyroptotic cells exhibit a swollen, enlarged morphology and ultimately undergo lysis, releasing their cytosolic contents - such as proteins, metabolites, and nucleic acids - into the extracellular space. These molecules can function as danger-associated molecular patterns (DAMPs), triggering inflammation when detected by neighboring cells. Mechanistically, pyroptosis is initiated by members of the gasdermin protein family, which were identified a decade ago as pore-forming executors of cell death. Mammalian gasdermins consist of a cytotoxic N-terminal domain, a flexible linker, and a C-terminal regulatory domain that binds to and inhibits the N-terminus. Proteolytic cleavage within the linker releases the N-terminal domain, enabling it to target various cellular membranes, including nuclear, mitochondrial, and plasma membranes, where it forms large transmembrane pores. Gasdermin pores in the plasma membrane disrupt the electrochemical gradient, leading to water influx and cell swelling. Their formation also activates the membrane protein ninjurin-1 (NINJ1), which oligomerizes to drive complete plasma membrane rupture and the release of large DAMPs. Since their discovery as pore-forming proteins, gasdermins have been linked to pyroptosis not only in host defense but also in various pathological conditions. This review explores the history of pyroptosis, recent insights into gasdermin activation, the cellular consequences of pore formation, and the physiological roles of pyroptosis.</p>","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":" ","pages":""},"PeriodicalIF":28.1,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143779207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1