{"title":"Genetic causal relationship between gut microbiota and cutaneous melanoma: a two-sample Mendelian randomization study.","authors":"Peizhou Wang, Tun Liu, Qingguo Zhang, Pan Luo","doi":"10.1097/CMR.0000000000000960","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, numerous studies suggest a potential association between the gut microbiota and the progression of melanoma. Hence, our objective was to examine the genetic impact of the gut microbiota on melanoma through the utilization of the Mendelian randomization (MR) approach. This research employed Bacteroides, Streptococcus, Proteobacteria, and Lachnospiraceae as exposure variables and cutaneous melanoma (CM) as the outcome in a two-sample MR analysis. In this MR research, the primary analytical approach was the random-effects inverse-variance weighting (IVW) model. Complementary methods included weighted median, MR Egger, and basic and weighted models. We assessed both heterogeneity and horizontal pleiotropy in our study, scrutinizing whether the analysis results were affected by any individual SNP. The random-effects IVW outcomes indicated that Streptococcus, Bacteroides, Lachnospiraceae and Proteobacteria had no causal relationship with CM, with odds ratios of 1.001 [95% confidence interval (CI) = 0.998-1.004, P = 0.444], 0.999 (95% CI = 0.996-1.002, P = 0.692), 1.001 (95% CI = 0.998-1.003, P = 0.306), and 0.999 (95% CI = 0.997-1.002, P = 0.998), respectively. No analyses exhibited heterogeneity, horizontal pleiotropy, or deviations. Our research determined that Bacteroides, Streptococcus, Proteobacteria, and Lachnospiraceae do not induce CM at the genetic level. However, we cannot dismiss the possibility that these four gut microbiotas might influence CM through other mechanisms.</p>","PeriodicalId":18550,"journal":{"name":"Melanoma Research","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Melanoma Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CMR.0000000000000960","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, numerous studies suggest a potential association between the gut microbiota and the progression of melanoma. Hence, our objective was to examine the genetic impact of the gut microbiota on melanoma through the utilization of the Mendelian randomization (MR) approach. This research employed Bacteroides, Streptococcus, Proteobacteria, and Lachnospiraceae as exposure variables and cutaneous melanoma (CM) as the outcome in a two-sample MR analysis. In this MR research, the primary analytical approach was the random-effects inverse-variance weighting (IVW) model. Complementary methods included weighted median, MR Egger, and basic and weighted models. We assessed both heterogeneity and horizontal pleiotropy in our study, scrutinizing whether the analysis results were affected by any individual SNP. The random-effects IVW outcomes indicated that Streptococcus, Bacteroides, Lachnospiraceae and Proteobacteria had no causal relationship with CM, with odds ratios of 1.001 [95% confidence interval (CI) = 0.998-1.004, P = 0.444], 0.999 (95% CI = 0.996-1.002, P = 0.692), 1.001 (95% CI = 0.998-1.003, P = 0.306), and 0.999 (95% CI = 0.997-1.002, P = 0.998), respectively. No analyses exhibited heterogeneity, horizontal pleiotropy, or deviations. Our research determined that Bacteroides, Streptococcus, Proteobacteria, and Lachnospiraceae do not induce CM at the genetic level. However, we cannot dismiss the possibility that these four gut microbiotas might influence CM through other mechanisms.
期刊介绍:
Melanoma Research is a well established international forum for the dissemination of new findings relating to melanoma. The aim of the Journal is to promote the level of informational exchange between those engaged in the field. Melanoma Research aims to encourage an informed and balanced view of experimental and clinical research and extend and stimulate communication and exchange of knowledge between investigators with differing areas of expertise. This will foster the development of translational research. The reporting of new clinical results and the effect and toxicity of new therapeutic agents and immunotherapy will be given emphasis by rapid publication of Short Communications. Thus, Melanoma Research seeks to present a coherent and up-to-date account of all aspects of investigations pertinent to melanoma. Consequently the scope of the Journal is broad, embracing the entire range of studies from fundamental and applied research in such subject areas as genetics, molecular biology, biochemistry, cell biology, photobiology, pathology, immunology, and advances in clinical oncology influencing the prevention, diagnosis and treatment of melanoma.