Luana Barbosa Correa, Natália Cristina Gomes-da-Silva, Clenilton Costa Dos Santos, Luciana Magalhães Rebelo Alencar, Maria das Graças Muller de Oliveira Henriques, Prapanna Bhattarai, Lin Zhu, Pedro Filho Noronha Souza, Elaine Cruz Rosas, Ralph Santos-Oliveira
{"title":"Chia nanoemulsion: anti-inflammatory mechanism, biological behavior and cellular interactions.","authors":"Luana Barbosa Correa, Natália Cristina Gomes-da-Silva, Clenilton Costa Dos Santos, Luciana Magalhães Rebelo Alencar, Maria das Graças Muller de Oliveira Henriques, Prapanna Bhattarai, Lin Zhu, Pedro Filho Noronha Souza, Elaine Cruz Rosas, Ralph Santos-Oliveira","doi":"10.4155/tde-2023-0088","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> This study explores chia oil, rich in ω-3 fatty acids and nutraceutical components, as a potential remedy for diseases, especially those linked to inflammation and cancer. <b>Methods/materials:</b> A chia oil-based nanoemulsion, developed through single emulsification, underwent comprehensive analysis using various techniques. <i>In vitro</i> and <i>in vivo</i> assays, including macrophage polarization, nitrite and cytokine production, cellular uptake and biodistribution, were conducted to assess the anti-inflammatory efficacy. <b>Results & conclusion:</b> Results reveal that the chia nanoemulsion significantly inhibits inflammation, outperforming pure oil with twice the efficacy. Enhanced uptake by macrophage-like cells and substantial accumulation in key organs indicate its potential as an economical and effective anti-inflammatory nanodrug, addressing global economic and health impacts of inflammation-related diseases.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11157993/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4155/tde-2023-0088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: This study explores chia oil, rich in ω-3 fatty acids and nutraceutical components, as a potential remedy for diseases, especially those linked to inflammation and cancer. Methods/materials: A chia oil-based nanoemulsion, developed through single emulsification, underwent comprehensive analysis using various techniques. In vitro and in vivo assays, including macrophage polarization, nitrite and cytokine production, cellular uptake and biodistribution, were conducted to assess the anti-inflammatory efficacy. Results & conclusion: Results reveal that the chia nanoemulsion significantly inhibits inflammation, outperforming pure oil with twice the efficacy. Enhanced uptake by macrophage-like cells and substantial accumulation in key organs indicate its potential as an economical and effective anti-inflammatory nanodrug, addressing global economic and health impacts of inflammation-related diseases.
期刊介绍:
Delivering therapeutics in a way that is right for the patient - safe, painless, reliable, targeted, efficient and cost effective - is the fundamental aim of scientists working in this area. Correspondingly, this evolving field has already yielded a diversity of delivery methods, including injectors, controlled release formulations, drug eluting implants and transdermal patches. Rapid technological advances and the desire to improve the efficacy and safety profile of existing medications by specific targeting to the site of action, combined with the drive to improve patient compliance, continue to fuel rapid research progress. Furthermore, the emergence of cell-based therapeutics and biopharmaceuticals such as proteins, peptides and nucleotides presents scientists with new and exciting challenges for the application of therapeutic delivery science and technology. Successful delivery strategies increasingly rely upon collaboration across a diversity of fields, including biology, chemistry, pharmacology, nanotechnology, physiology, materials science and engineering. Therapeutic Delivery recognizes the importance of this diverse research platform and encourages the publication of articles that reflect the highly interdisciplinary nature of the field. In a highly competitive industry, Therapeutic Delivery provides the busy researcher with a forum for the rapid publication of original research and critical reviews of all the latest relevant and significant developments, and focuses on how the technological, pharmacological, clinical and physiological aspects come together to successfully deliver modern therapeutics to patients. The journal delivers this essential information in concise, at-a-glance article formats that are readily accessible to the full spectrum of therapeutic delivery researchers.