首页 > 最新文献

Therapeutic delivery最新文献

英文 中文
Comparative in-vitro and in-vivo evaluation of spherulites and cubosomes of Irinotecan for lung targeting.
IF 3 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-02 DOI: 10.1080/20415990.2025.2460421
Jatin Rawat, Ravikumar Kachhadiya, Hetal Thakkar

Aims: The present investigation aimed at the comparative evaluation of the developed nanocarriers, viz. spherulites and cubosomes for lung targeting.

Materials and methods: Both the spherulites and cubosomes were characterized for their entrapment efficiency, drug loading, size and zeta potential, in-vitro drug release profile, surface morphology, hemocompatibility, and in-vivo pharmacokinetic and lung biodistribution.

Results and conclusions: The optimized batches of spherulites and cubosomes possessed high entrapment efficiency and drug loading with size around 200 nm, which is suitable for lung targeting. The zeta potential value for both the nanoformulations was found to be between -20 and -30 mv indicating the physical stability against aggregation. The SEM and TEM analysis revealed the presence of spherical and discrete particles in both the types of nanocarriers. Water channels were observed in case of cubosomes. Spherulites and cubosomes showed pH-dependent drug release with lower release at physiological pH while higher release at the pH of the tumor microenvironment. Both spherulites and cubosomes exhibited highly significant increase in the half-life and mean residence time in the plasma. The prepared nanoformulations were hemocompatible and had higher lung targeting potential compared to the plain drug solution.

{"title":"Comparative in-vitro and in-vivo evaluation of spherulites and cubosomes of Irinotecan for lung targeting.","authors":"Jatin Rawat, Ravikumar Kachhadiya, Hetal Thakkar","doi":"10.1080/20415990.2025.2460421","DOIUrl":"https://doi.org/10.1080/20415990.2025.2460421","url":null,"abstract":"<p><strong>Aims: </strong>The present investigation aimed at the comparative evaluation of the developed nanocarriers, viz. spherulites and cubosomes for lung targeting.</p><p><strong>Materials and methods: </strong>Both the spherulites and cubosomes were characterized for their entrapment efficiency, drug loading, size and zeta potential, in-vitro drug release profile, surface morphology, hemocompatibility, and in-vivo pharmacokinetic and lung biodistribution.</p><p><strong>Results and conclusions: </strong>The optimized batches of spherulites and cubosomes possessed high entrapment efficiency and drug loading with size around 200 nm, which is suitable for lung targeting. The zeta potential value for both the nanoformulations was found to be between -20 and -30 mv indicating the physical stability against aggregation. The SEM and TEM analysis revealed the presence of spherical and discrete particles in both the types of nanocarriers. Water channels were observed in case of cubosomes. Spherulites and cubosomes showed pH-dependent drug release with lower release at physiological pH while higher release at the pH of the tumor microenvironment. Both spherulites and cubosomes exhibited highly significant increase in the half-life and mean residence time in the plasma. The prepared nanoformulations were hemocompatible and had higher lung targeting potential compared to the plain drug solution.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"1-9"},"PeriodicalIF":3.0,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143081099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SN-38-indoximod conjugate: carrier free nano-prodrug for cancer therapy.
IF 3 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-31 DOI: 10.1080/20415990.2025.2458449
Sanjay Kumar, Yoshitaka Koseki, Keita Tanita, Aki Shibata, Asuka Mizutani, Hitoshi Kasai

Background: The integration of immunotherapy alongside chemotherapy represents a crucial approach in the treatment of cancer. Herein we report the SN-38-indoximod conjugate nano-prodrug to address the difficulties encountered by individuals. In this prodrug, SN-38 is connected to indoximod through a specific disulfide linker, which enables the release of the components in response to the tumor microenvironment characterized by elevated levels of glutathione, thereby facilitating programmed chemoimmunotherapy.

Results: SN-38-indoximod conjugate was synthesized and fabricated to nano-prodrug by reprecipitation method. It showed comparable anti-cancer activity against A549 cells than SN-38 (IC50 = 0.24 ± 0.01 µM) with IC50 value 0.32 ± 0.04 µM. It inhibited 90% A549 cell at very lower concentration (IC90 = 6.07 ± 0.41 µM) as compared with SN-38 (IC90 = 24.60 ± 1.24 µM) and mixture of SN-38: indoximod (1:1, IC90 >30 µM). The nano-prodrug showed better size distribution profile and dispersion stability contains nanoparticles in effective size range (80-160 nm) required for the EPR effect.

Conclusion: This research offers valuable insights into the advancement of conjugate nano-prodrugs exhibiting synergistic pharmacological effects, while also presenting novel opportunities for the design of prodrug molecules capable of releasing drugs in response to diverse triggers.

{"title":"SN-38-indoximod conjugate: carrier free nano-prodrug for cancer therapy.","authors":"Sanjay Kumar, Yoshitaka Koseki, Keita Tanita, Aki Shibata, Asuka Mizutani, Hitoshi Kasai","doi":"10.1080/20415990.2025.2458449","DOIUrl":"https://doi.org/10.1080/20415990.2025.2458449","url":null,"abstract":"<p><strong>Background: </strong>The integration of immunotherapy alongside chemotherapy represents a crucial approach in the treatment of cancer. Herein we report the SN-38-indoximod conjugate nano-prodrug to address the difficulties encountered by individuals. In this prodrug, SN-38 is connected to indoximod through a specific disulfide linker, which enables the release of the components in response to the tumor microenvironment characterized by elevated levels of glutathione, thereby facilitating programmed chemoimmunotherapy.</p><p><strong>Results: </strong>SN-38-indoximod conjugate was synthesized and fabricated to nano-prodrug by reprecipitation method. It showed comparable anti-cancer activity against A549 cells than SN-38 (IC<sub>50</sub> = 0.24 ± 0.01 µM) with IC<sub>50</sub> value 0.32 ± 0.04 µM. It inhibited 90% A549 cell at very lower concentration (IC<sub>90</sub> = 6.07 ± 0.41 µM) as compared with SN-38 (IC<sub>90</sub> = 24.60 ± 1.24 µM) and mixture of SN-38: indoximod (1:1, IC<sub>90</sub> >30 µM). The nano-prodrug showed better size distribution profile and dispersion stability contains nanoparticles in effective size range (80-160 nm) required for the EPR effect.</p><p><strong>Conclusion: </strong>This research offers valuable insights into the advancement of conjugate nano-prodrugs exhibiting synergistic pharmacological effects, while also presenting novel opportunities for the design of prodrug molecules capable of releasing drugs in response to diverse triggers.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"1-10"},"PeriodicalIF":3.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A quality-by-design approach to develop abemaciclib solid lipid nanoparticles for targeting breast cancer cell lines.
IF 3 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-29 DOI: 10.1080/20415990.2025.2457314
Bonnie Chin, Wei Meng Lim, Samah Hamed Almurisi, Thiagarajan Madheswaran

Aim: Abemaciclib (ABE) is an anticancer drug that suffers from low bioavailability and multidrug resistance. This study aims to develop ABE-loaded solid lipid nanoparticles (ABE-SLNs), which will enhance drug solubility and lead to increased cellular uptake and enhanced cytotoxicity when delivering tumor cells.

Methods: Melt emulsification followed by ultrasonication was used as a method of preparation and Quality-by-Design (QbD) was utilized to optimize ABE-SLNs.

Results: The optimized ABE-SLNs consist of Precirol-ATO5 as a lipid and Brij-58 as a surfactant. The particle size, PDI value, and zeta potential of the optimized formulation were 170.4 ± 0.49 nm, 0.25 ± 0.014, and -26.4 ± 0.1 mV, respectively. It also showed sustained release behavior and a high entrapment efficiency of 79.96%. ABE-SLNs exhibited enhanced anticancer activity in the MDA-MB-231 and T47D breast cancer cell lines compared to pure ABE. In Caco-2 human colonic cell lines, ABE-SLNs also showed increased cellular uptake.

Conclusion: The use of QbD to achieve high entrapment efficiency and sustained release in ABE-SLNs, coupled with enhanced cellular uptake and cytotoxicity, represents a novel approach that could set a new standard for nanoparticle-based drug delivery systems.

{"title":"A quality-by-design approach to develop abemaciclib solid lipid nanoparticles for targeting breast cancer cell lines.","authors":"Bonnie Chin, Wei Meng Lim, Samah Hamed Almurisi, Thiagarajan Madheswaran","doi":"10.1080/20415990.2025.2457314","DOIUrl":"https://doi.org/10.1080/20415990.2025.2457314","url":null,"abstract":"<p><strong>Aim: </strong>Abemaciclib (ABE) is an anticancer drug that suffers from low bioavailability and multidrug resistance. This study aims to develop ABE-loaded solid lipid nanoparticles (ABE-SLNs), which will enhance drug solubility and lead to increased cellular uptake and enhanced cytotoxicity when delivering tumor cells.</p><p><strong>Methods: </strong>Melt emulsification followed by ultrasonication was used as a method of preparation and Quality-by-Design (QbD) was utilized to optimize ABE-SLNs.</p><p><strong>Results: </strong>The optimized ABE-SLNs consist of Precirol-ATO5 as a lipid and Brij-58 as a surfactant. The particle size, PDI value, and zeta potential of the optimized formulation were 170.4 ± 0.49 nm, 0.25 ± 0.014, and -26.4 ± 0.1 mV, respectively. It also showed sustained release behavior and a high entrapment efficiency of 79.96%. ABE-SLNs exhibited enhanced anticancer activity in the MDA-MB-231 and T47D breast cancer cell lines compared to pure ABE. In Caco-2 human colonic cell lines, ABE-SLNs also showed increased cellular uptake.</p><p><strong>Conclusion: </strong>The use of QbD to achieve high entrapment efficiency and sustained release in ABE-SLNs, coupled with enhanced cellular uptake and cytotoxicity, represents a novel approach that could set a new standard for nanoparticle-based drug delivery systems.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"1-15"},"PeriodicalIF":3.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143060701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule based hydrogel for transdermal delivery.
IF 3 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-29 DOI: 10.1080/20415990.2025.2457312
Shashank Chaturvedi, Arushi Gaur, Anuj Garg

Aim: Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule hydrogel for transdermal delivery.

Method: A 33 Box-Behnken Design and numerical optimization was performed to obtain the optimized formulation. Subsequently, the optimized raloxifene hydrochloride loaded lipid nanocapsule was developed using phase inversion temperature and characterized for physicochemical properties. Furthermore, the optimized lipid nanocapsule was loaded into a hydrogel and evaluated for rheology, spreadability, ex-vivo skin permeation, deposition and irritation.

Results: The numerical optimization suggested an optimal formula with desirability value of 0.852 and low prediction errors. The optimized formulation showed good % drug entrapment efficiency (79.56 ± 2.34%), nanometer size (56.68 ± 1.2 nm), monodisperse nature (PDI = 0.176 ± 0.2), spherical morphology and good drug-excipient compatibility. The raloxifene hydrochloride loaded lipid nanocapsule hydrogel showed shear thinning properties, sustained drug delivery, dermal compatibility and significantly higher permeability (2-fold), retention (3.37) for raloxifene hydrochloride compared to the control.

Conclusion: The present study showed a successful development of raloxifene hydrochloride loaded lipid nanocapsule hydrogel with improved skin permeation, retention, and good topical compatibility. This formulation may overcome the challenges associated with raloxifene hydrochloride oral delivery including low bioavailability.

{"title":"Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule based hydrogel for transdermal delivery.","authors":"Shashank Chaturvedi, Arushi Gaur, Anuj Garg","doi":"10.1080/20415990.2025.2457312","DOIUrl":"https://doi.org/10.1080/20415990.2025.2457312","url":null,"abstract":"<p><strong>Aim: </strong>Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule hydrogel for transdermal delivery.</p><p><strong>Method: </strong>A 3<sup>3</sup> Box-Behnken Design and numerical optimization was performed to obtain the optimized formulation. Subsequently, the optimized raloxifene hydrochloride loaded lipid nanocapsule was developed using phase inversion temperature and characterized for physicochemical properties. Furthermore, the optimized lipid nanocapsule was loaded into a hydrogel and evaluated for rheology, spreadability, ex-vivo skin permeation, deposition and irritation.</p><p><strong>Results: </strong>The numerical optimization suggested an optimal formula with desirability value of 0.852 and low prediction errors. The optimized formulation showed good % drug entrapment efficiency (79.56 ± 2.34%), nanometer size (56.68 ± 1.2 nm), monodisperse nature (PDI = 0.176 ± 0.2), spherical morphology and good drug-excipient compatibility. The raloxifene hydrochloride loaded lipid nanocapsule hydrogel showed shear thinning properties, sustained drug delivery, dermal compatibility and significantly higher permeability (2-fold), retention (3.37) for raloxifene hydrochloride compared to the control.</p><p><strong>Conclusion: </strong>The present study showed a successful development of raloxifene hydrochloride loaded lipid nanocapsule hydrogel with improved skin permeation, retention, and good topical compatibility. This formulation may overcome the challenges associated with raloxifene hydrochloride oral delivery including low bioavailability.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"1-16"},"PeriodicalIF":3.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143060704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of propranolol loaded SLN for transdermal delivery: in-vitro characterization and skin deposition studies.
IF 3 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-28 DOI: 10.1080/20415990.2025.2458451
Eskandar Moghimipour, Mohammadamin Khazali, Behzad Sharif MakhmalZadeh, Maryam Abedini Baghbadorani, Ali Zangeneh, Somayeh Sohrabi, Fereshteh Nejaddehbashi, Fatemeh Hajipour, Somayeh Handali

Aim: The study aimed to formulate solid lipid nanoparticles (SLNs) for the transdermal delivery of PPL to improve skin retention and efficacy.

Materials and method: The particle size distribution of SLNs was determined and the morphology of SLNs was also analyzed by SEM. In-vitro, ex-vivo and in vivo evaluations were done for PPL loaded SLN. The safety of drug delivery systems was assayed using MTT test.

Results: The results indicated successful encapsulation of PPL in SLNs (59.38%), which exhibited a spherical shape and smooth surface. Compared to PPL solution, SLNs demonstrated a prolonged drug release profile in vitro. Stability tests over three months showed no significant changes in entrapment efficiency or size distribution. Enhanced permeation through shed snake and rat skin was observed with SLNs compared to the PPL solution. Ex-vivo and in vivo studies confirmed that PPL-loaded SLNs significantly increased drug content in the skin. Importantly, the SLNs displayed biocompatibility, as no significant cytotoxic effects were noted, and they were nonirritating to rat skin.

Conclusion: To the best of our knowledge, this is the first study that indicates SLNs can be considered as a promising nanocarriers for transdermal delivery of PPL.

{"title":"Development of propranolol loaded SLN for transdermal delivery: <i>in-vitro</i> characterization and skin deposition studies.","authors":"Eskandar Moghimipour, Mohammadamin Khazali, Behzad Sharif MakhmalZadeh, Maryam Abedini Baghbadorani, Ali Zangeneh, Somayeh Sohrabi, Fereshteh Nejaddehbashi, Fatemeh Hajipour, Somayeh Handali","doi":"10.1080/20415990.2025.2458451","DOIUrl":"https://doi.org/10.1080/20415990.2025.2458451","url":null,"abstract":"<p><strong>Aim: </strong>The study aimed to formulate solid lipid nanoparticles (SLNs) for the transdermal delivery of PPL to improve skin retention and efficacy.</p><p><strong>Materials and method: </strong>The particle size distribution of SLNs was determined and the morphology of SLNs was also analyzed by SEM. <i>In-vitro</i>, <i>ex-vivo</i> and <i>in vivo</i> evaluations were done for PPL loaded SLN. The safety of drug delivery systems was assayed using MTT test.</p><p><strong>Results: </strong>The results indicated successful encapsulation of PPL in SLNs (59.38%), which exhibited a spherical shape and smooth surface. Compared to PPL solution, SLNs demonstrated a prolonged drug release profile <i>in vitro</i>. Stability tests over three months showed no significant changes in entrapment efficiency or size distribution. Enhanced permeation through shed snake and rat skin was observed with SLNs compared to the PPL solution. <i>Ex-vivo</i> and <i>in vivo</i> studies confirmed that PPL-loaded SLNs significantly increased drug content in the skin. Importantly, the SLNs displayed biocompatibility, as no significant cytotoxic effects were noted, and they were nonirritating to rat skin.</p><p><strong>Conclusion: </strong>To the best of our knowledge, this is the first study that indicates SLNs can be considered as a promising nanocarriers for transdermal delivery of PPL.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"1-11"},"PeriodicalIF":3.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143060707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Naturally derived hydrogels for wound healing.
IF 3 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-27 DOI: 10.1080/20415990.2025.2457928
Duy Toan Pham, Ngo Thi Ngoc Thuy, Nguyen Thi Phuong Thao, Le Thi Nhi, Bui Thi Phuong Thuy

Natural hydrogels have garnered increasing attention due to their natural origins and beneficial roles in wound healing. Hydrogel water-retaining capacity and excellent biocompatibility create an ideal moist environment for wound healing, thereby enhancing cell proliferation and tissue regeneration. For this reason, naturally derived hydrogels formulated from biomaterials such as chitosan, alginate, gelatin, and fibroin are highly promising due to their biodegradability and low immunogenic responses. Recent integrated approaches to utilizing new technologies with bioactive agents have significantly improved the mechanical properties of hydrogels and the controlled release and delivery of active compounds, thereby increasing the efficiency of the treatment processes. Herein, this review highlights the advantages and the challenges of natural hydrogels in wound healing, focusing on their mechanical strength, controlled degradation rates, safety and efficiency validation, and the potential for incorporating advanced technologies such as tissue engineering and gene therapy for utilization in personalized medicine.

{"title":"Naturally derived hydrogels for wound healing.","authors":"Duy Toan Pham, Ngo Thi Ngoc Thuy, Nguyen Thi Phuong Thao, Le Thi Nhi, Bui Thi Phuong Thuy","doi":"10.1080/20415990.2025.2457928","DOIUrl":"https://doi.org/10.1080/20415990.2025.2457928","url":null,"abstract":"<p><p>Natural hydrogels have garnered increasing attention due to their natural origins and beneficial roles in wound healing. Hydrogel water-retaining capacity and excellent biocompatibility create an ideal moist environment for wound healing, thereby enhancing cell proliferation and tissue regeneration. For this reason, naturally derived hydrogels formulated from biomaterials such as chitosan, alginate, gelatin, and fibroin are highly promising due to their biodegradability and low immunogenic responses. Recent integrated approaches to utilizing new technologies with bioactive agents have significantly improved the mechanical properties of hydrogels and the controlled release and delivery of active compounds, thereby increasing the efficiency of the treatment processes. Herein, this review highlights the advantages and the challenges of natural hydrogels in wound healing, focusing on their mechanical strength, controlled degradation rates, safety and efficiency validation, and the potential for incorporating advanced technologies such as tissue engineering and gene therapy for utilization in personalized medicine.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"1-15"},"PeriodicalIF":3.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Next-generation pharmaceuticals: the rise of sildenafil citrate ODF for the treatment of men with erectile dysfunction. 下一代药物:柠檬酸西地那非用于治疗男性勃起功能障碍的兴起。
IF 3 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-12 DOI: 10.1080/20415990.2024.2445501
Emmanuele A Jannini, Shivani Ohri Vignesh, Tarek Hassan

Orodispersible film (ODF) is one of the novel formulations that disintegrate rapidly in the mouth without the requisite for water compared to other conventional oral solid dosage formulations. This delivery system serves as a convenient mode of administration, especially in patients who have dysphagia and fluid restriction, being beneficial to pediatric, geriatric, and bedridden patients. A novel sildenafil ODF containing sildenafil citrate is formulated to be used in patients with erectile dysfunction (ED). This review discusses the advantages of ODF in improving compliance and satisfaction in these patients and describes the manufacturing techniques, evaluation tests, bioequivalence, and stability studies of sildenafil ODF. This formulation offers unique benefit to patients with ED by improving their acceptance and compliance and respecting their privacy and the need for a discreet treatment. Moreover, the comparison of pharmacokinetic parameters between the sildenafil ODF administered with and without water and the conventional film-coated tablet were similar. It also demonstrated reliable performance that yielded a consistent product, meeting all specifications at release and after three weeks of storage under stressed conditions (60°C). Sildenafil ODF warrants improved ease of intake, taste, portability, storage, and compliance among ED patients, making it the potential most preferred formulation and drug of choice.

与其他传统的口服固体剂型相比,孔分散膜(ODF)是一种无需水即可在口腔中快速分解的新型剂型。这种给药系统是一种方便的给药方式,特别是对于吞咽困难和液体限制的患者,对儿童、老年人和卧床不起的患者都有益。一种新型西地那非ODF含有柠檬酸西地那非配制用于患者勃起功能障碍(ED)。这篇综述讨论了ODF在提高这些患者的依从性和满意度方面的优势,并描述了西地那非ODF的制造技术、评价试验、生物等效性和稳定性研究。这种配方通过提高ED患者的接受度和依从性,尊重他们的隐私和谨慎治疗的需要,为ED患者提供了独特的好处。此外,加水和不加水给药的西地那非ODF与常规薄膜包衣片的药动学参数比较相似。它还显示出可靠的性能,产生一致的产品,在发布时和在压力条件下(60°C)储存三周后符合所有规格。西地那非ODF保证易于摄入,口味,便携性,储存和依从性在ED患者中,使其成为潜在的首选配方和药物选择。
{"title":"Next-generation pharmaceuticals: the rise of sildenafil citrate ODF for the treatment of men with erectile dysfunction.","authors":"Emmanuele A Jannini, Shivani Ohri Vignesh, Tarek Hassan","doi":"10.1080/20415990.2024.2445501","DOIUrl":"https://doi.org/10.1080/20415990.2024.2445501","url":null,"abstract":"<p><p>Orodispersible film (ODF) is one of the novel formulations that disintegrate rapidly in the mouth without the requisite for water compared to other conventional oral solid dosage formulations. This delivery system serves as a convenient mode of administration, especially in patients who have dysphagia and fluid restriction, being beneficial to pediatric, geriatric, and bedridden patients. A novel sildenafil ODF containing sildenafil citrate is formulated to be used in patients with erectile dysfunction (ED). This review discusses the advantages of ODF in improving compliance and satisfaction in these patients and describes the manufacturing techniques, evaluation tests, bioequivalence, and stability studies of sildenafil ODF. This formulation offers unique benefit to patients with ED by improving their acceptance and compliance and respecting their privacy and the need for a discreet treatment. Moreover, the comparison of pharmacokinetic parameters between the sildenafil ODF administered with and without water and the conventional film-coated tablet were similar. It also demonstrated reliable performance that yielded a consistent product, meeting all specifications at release and after three weeks of storage under stressed conditions (60°C). Sildenafil ODF warrants improved ease of intake, taste, portability, storage, and compliance among ED patients, making it the potential most preferred formulation and drug of choice.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"1-14"},"PeriodicalIF":3.0,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategies for transportation of peptides across the skin for treatment of multiple diseases. 跨皮肤运输肽以治疗多种疾病的策略。
IF 3 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-01 Epub Date: 2024-10-16 DOI: 10.1080/20415990.2024.2411943
Janhavi Bhavsar, Kaustubh Kasture, Bhagyashree V Salvi, Pravin Shende

An established view in genetic engineering dictates an increase in the discovery of therapeutic peptides to enable the treatment of multiple diseases. The use of hypodermic needle for delivery of proteins and peptides occurs due to the hydrophilic nature, sensitivity toward proteolytic enzymes and high molecular weight. The non-invasive nature of the transdermal delivery technique offers multiple advantages over the invasive route to release drugs directly into the systemic circulation to enhance bioavailability, better patient compliance, reduced toxicity and local irritability. The transdermal route seems highly desirable from the pharmaco-therapeutic and patient compliance point of view, however, the lipophilic barrier of skin restricts the application. The use of several techniques like electrical methods (iontophoresis, sonophoresis etc.), chemical penetration enhancers (e.g. protease inhibitors, penetration enhancers, etc.) and nanocarriers (dendrimers, lipid nanocapsules, etc.) are utilized to improve the passage of drug molecules across the biomembranes. Additionally, such clinical interventions facilitate the physicochemical characteristics of peptides, to enable effective preservation, conveyance and release of therapeutic agents. Moreover, strategies ensure the attainment of the intended targets and enhance treatment outcomes for multiple diseases. This review article focuses on the techniques of peptide transportation across the skin to advance the delivery approaches and therapeutic efficiency.

基因工程的既定观点决定了治疗肽的发现越来越多,从而能够治疗多种疾病。皮下注射针头具有亲水性、对蛋白水解酶的敏感性和高分子量等特点,因此被用于输送蛋白质和肽。与侵入性途径相比,透皮给药技术的非侵入性具有多种优势,可将药物直接释放到全身循环中,从而提高生物利用度,改善患者的依从性,降低毒性和局部刺激性。从药物治疗和患者依从性的角度来看,透皮给药途径似乎非常理想,但皮肤的亲脂屏障限制了其应用。为了改善药物分子穿过生物膜的情况,我们使用了多种技术,如电方法(离子透入疗法、声波透入疗法等)、化学渗透促进剂(如蛋白酶抑制剂、渗透促进剂等)和纳米载体(树枝状聚合物、脂质纳米胶囊等)。此外,这些临床干预措施还有助于改善肽的理化特性,从而有效保存、输送和释放治疗药物。此外,这些策略还能确保达到预期目标,提高多种疾病的治疗效果。这篇综述文章重点介绍了多肽在皮肤上的传输技术,以推进传输方法和治疗效率。
{"title":"Strategies for transportation of peptides across the skin for treatment of multiple diseases.","authors":"Janhavi Bhavsar, Kaustubh Kasture, Bhagyashree V Salvi, Pravin Shende","doi":"10.1080/20415990.2024.2411943","DOIUrl":"10.1080/20415990.2024.2411943","url":null,"abstract":"<p><p>An established view in genetic engineering dictates an increase in the discovery of therapeutic peptides to enable the treatment of multiple diseases. The use of hypodermic needle for delivery of proteins and peptides occurs due to the hydrophilic nature, sensitivity toward proteolytic enzymes and high molecular weight. The non-invasive nature of the transdermal delivery technique offers multiple advantages over the invasive route to release drugs directly into the systemic circulation to enhance bioavailability, better patient compliance, reduced toxicity and local irritability. The transdermal route seems highly desirable from the pharmaco-therapeutic and patient compliance point of view, however, the lipophilic barrier of skin restricts the application. The use of several techniques like electrical methods (iontophoresis, sonophoresis etc.), chemical penetration enhancers (e.g. protease inhibitors, penetration enhancers, etc.) and nanocarriers (dendrimers, lipid nanocapsules, etc.) are utilized to improve the passage of drug molecules across the biomembranes. Additionally, such clinical interventions facilitate the physicochemical characteristics of peptides, to enable effective preservation, conveyance and release of therapeutic agents. Moreover, strategies ensure the attainment of the intended targets and enhance treatment outcomes for multiple diseases. This review article focuses on the techniques of peptide transportation across the skin to advance the delivery approaches and therapeutic efficiency.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"63-86"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703487/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zein decorated rifaximin nanosuspension: approach for sustained release and anti-bacterial efficacy enhancement. Zein 修饰的利福昔明纳米悬浮液:持续释放和提高抗菌功效的方法。
IF 3 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-01 Epub Date: 2024-11-12 DOI: 10.1080/20415990.2024.2418799
Atul Mourya, Mayank Handa, Kanchan Singh, Suresh Chintalapati, Jitender Madan, Rahul Shukla

Aim: The goal of the present work was to formulate zein-decorated rifaximin (RFX) nanosuspension to attain sustained release as well as effectiveness against Escherichia coli (E. coli).Methods: The RFX nanosuspension was fabricated by using antisolvent addition method followed by coating using hydroalcoholic zein solution. The optimized RFX-NS and RFX-NS@zein was lyophilized for further spectroscopic evaluations. In vitro antibacterial potential was elucidated using well diffusion method whereas MIC value was determined by microbroth dilution method against E. coli for RFX-NS and pure RFX.Results: Box-Behnken Design was employed to assess the effects of independent variables on quality target product profile of RFX-NS. Optimized RFX-NS depicted particle size of 193.5 ± 4.45 nm with 76.49 ± 1.71% drug content. The significant change in particle size and zeta potential confirmed the formation of zein coated RFX-NS (RFX-NS@zein). In vitro release study depicted, 96.91 ± 1.21% release of RFX from RFX-NS in 6 h whereas 97.47 ± 1.99% RFX release was observed from RFX-NS@zein at the end of 12 h. Antibacterial assay of RFX-NS and free RFX against E. coli displayed MIC value of 15.44 ± 0.01 μg/ml and 72.96 ± 0.25 μg/ml, respectively.Conclusion: The results highlighted a significance of nanosuspension for improving the solubility of RFX and its antibacterial potential against E. coli.

目的:本研究的目的是配制经玉米蛋白装饰的利福昔明(RFX)纳米悬浮液,以实现持续释放并有效抑制大肠杆菌(E. coli):方法:RFX 纳米悬浮液的制备采用了反溶剂添加法,然后使用水醇玉米蛋白溶液进行包衣。优化后的 RFX-NS 和 RFX-NS@zein 被冻干,用于进一步的光谱评估。采用井扩散法阐明了 RFX-NS 和纯 RFX 的体外抗菌潜力,而通过微流稀释法测定了 RFX-NS 和纯 RFX 对大肠杆菌的 MIC 值:结果:采用方框-贝肯设计法评估了自变量对 RFX-NS 目标产品质量的影响。优化后的 RFX-NS 的粒径为 193.5 ± 4.45 nm,药物含量为 76.49 ± 1.71%。粒度和 zeta 电位的明显变化证实形成了玉米蛋白包衣 RFX-NS(RFX-NS@玉米蛋白)。体外释放研究表明,RFX-NS 在 6 小时内释放了 96.91 ± 1.21% 的 RFX,而 RFX-NS@zein 在 12 小时结束时释放了 97.47 ± 1.99% 的 RFX。RFX-NS 和游离 RFX 对大肠杆菌的抗菌检测显示 MIC 值分别为 15.44 ± 0.01 μg/ml 和 72.96 ± 0.25 μg/ml:结果表明,纳米悬浮液对提高 RFX 的溶解度及其对大肠杆菌的抗菌潜力具有重要意义。
{"title":"Zein decorated rifaximin nanosuspension: approach for sustained release and anti-bacterial efficacy enhancement.","authors":"Atul Mourya, Mayank Handa, Kanchan Singh, Suresh Chintalapati, Jitender Madan, Rahul Shukla","doi":"10.1080/20415990.2024.2418799","DOIUrl":"10.1080/20415990.2024.2418799","url":null,"abstract":"<p><p><b>Aim:</b> The goal of the present work was to formulate zein-decorated rifaximin (RFX) nanosuspension to attain sustained release as well as effectiveness against <i>Escherichia coli (E. coli)</i>.<b>Methods:</b> The RFX nanosuspension was fabricated by using antisolvent addition method followed by coating using hydroalcoholic zein solution. The optimized RFX-NS and RFX-NS@zein was lyophilized for further spectroscopic evaluations. <i>In vitro</i> antibacterial potential was elucidated using well diffusion method whereas MIC value was determined by microbroth dilution method against <i>E. coli</i> for RFX-NS and pure RFX.<b>Results:</b> Box-Behnken Design was employed to assess the effects of independent variables on quality target product profile of RFX-NS. Optimized RFX-NS depicted particle size of 193.5 ± 4.45 nm with 76.49 ± 1.71% drug content. The significant change in particle size and zeta potential confirmed the formation of zein coated RFX-NS (RFX-NS@zein). <i>In vitro</i> release study depicted, 96.91 ± 1.21% release of RFX from RFX-NS in 6 h whereas 97.47 ± 1.99% RFX release was observed from RFX-NS@zein at the end of 12 h. Antibacterial assay of RFX-NS and free RFX against <i>E. coli</i> displayed MIC value of 15.44 ± 0.01 μg/ml and 72.96 ± 0.25 μg/ml, respectively.<b>Conclusion:</b> The results highlighted a significance of nanosuspension for improving the solubility of RFX and its antibacterial potential against <i>E. coli</i>.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"9-23"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730120/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cabozantinib-phospholipid complex for enhanced solubility, bioavailability, and reduced toxicity in liver cancer. 卡博赞替尼-磷脂复合物增强溶解度,生物利用度,降低肝癌毒性。
IF 3 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-01-01 Epub Date: 2024-11-29 DOI: 10.1080/20415990.2024.2435240
Jayesh Patil, Sankha Bhattacharya, Suprit D Saoji, Payal Dande

Aims: To enhance the therapeutic potential of Cabozantinib (CBZ), a tyrosine kinase inhibitor with limited water solubility, low bioavailability, and high toxicity, by developing a Cabozantinib-Phospholipid Complex (CBZ-PLS).

Materials & methods: CBZ-PLS was formulated using solvent evaporation with a Box-Behnken design and characterized using various techniques to confirm molecular interactions. Solubility, in vitro release, pharmacokinetics, and toxicity were evaluated. Cytotoxic effects on HepG2 cell lines were also assessed.

Results: CBZ-PLS exhibited a 126-fold increase in solubility and enhanced CBZ release in vitro. Pharmacokinetic studies on Wistar rats demonstrated a 1.58-fold increase in bioavailability, while acute toxicity studies confirmed biocompatibility. CBZ-PLS showed superior cytotoxicity, apoptosis induction, migration inhibition, increased ROS generation, and greater DNA fragmentation in HepG2 cells. The complex also maintained stability over 6 months.

Conclusions: CBZ-PLS significantly improves the solubility, bioavailability, and therapeutic efficacy of CBZ against liver cancer, presenting a promising approach for more effective liver cancer treatment.

目的:通过开发Cabozantinib-磷脂复合物(CBZ- pls),提高Cabozantinib (CBZ)的治疗潜力,Cabozantinib是一种水溶性有限、生物利用度低、毒性高的酪氨酸激酶抑制剂。材料与方法:采用Box-Behnken设计的溶剂蒸发方法配制CBZ-PLS,并使用各种技术确定分子相互作用。对其溶解度、体外释放、药代动力学和毒性进行了评价。对HepG2细胞系的细胞毒作用也进行了评估。结果:CBZ- pls的溶解度提高了126倍,体外释放CBZ增强。Wistar大鼠的药代动力学研究表明,生物利用度增加1.58倍,而急性毒性研究证实了生物相容性。CBZ-PLS在HepG2细胞中表现出优异的细胞毒性、诱导凋亡、抑制迁移、增加ROS生成和更大的DNA片段化。该综合体也保持了6个多月的稳定。结论:CBZ- pls显著提高了CBZ对肝癌的溶解度、生物利用度和治疗效果,为更有效地治疗肝癌提供了一条有希望的途径。
{"title":"Cabozantinib-phospholipid complex for enhanced solubility, bioavailability, and reduced toxicity in liver cancer.","authors":"Jayesh Patil, Sankha Bhattacharya, Suprit D Saoji, Payal Dande","doi":"10.1080/20415990.2024.2435240","DOIUrl":"10.1080/20415990.2024.2435240","url":null,"abstract":"<p><strong>Aims: </strong>To enhance the therapeutic potential of Cabozantinib (CBZ), a tyrosine kinase inhibitor with limited water solubility, low bioavailability, and high toxicity, by developing a Cabozantinib-Phospholipid Complex (CBZ-PLS).</p><p><strong>Materials & methods: </strong>CBZ-PLS was formulated using solvent evaporation with a Box-Behnken design and characterized using various techniques to confirm molecular interactions. Solubility, in vitro release, pharmacokinetics, and toxicity were evaluated. Cytotoxic effects on HepG2 cell lines were also assessed.</p><p><strong>Results: </strong>CBZ-PLS exhibited a 126-fold increase in solubility and enhanced CBZ release in vitro. Pharmacokinetic studies on Wistar rats demonstrated a 1.58-fold increase in bioavailability, while acute toxicity studies confirmed biocompatibility. CBZ-PLS showed superior cytotoxicity, apoptosis induction, migration inhibition, increased ROS generation, and greater DNA fragmentation in HepG2 cells. The complex also maintained stability over 6 months.</p><p><strong>Conclusions: </strong>CBZ-PLS significantly improves the solubility, bioavailability, and therapeutic efficacy of CBZ against liver cancer, presenting a promising approach for more effective liver cancer treatment.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"25-41"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Therapeutic delivery
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1