Aim: Laboratory scale-up of artemisinin-loaded emulgel (ART-emulgel) was carried out and characterized for therapeutic performance in osteoarthritis (OA).Materials & methods: The solubility of ART in various oils, surfactants and co-surfactants were screened for construction of pseudo ternary phase diagram (TPD), followed by scale-up of artemisinin loaded nanoemulsion (ART-NE). ART-NE was amalgamated with Carbopol Ultrez 10-NF to prepare ART-emulgel that was later characterized in vitro and in vivo to analyze therapeutic efficacy in monosodium-iodoacetate (MIA) induced knee OA.Results: The droplet diameter of ART-NE was estimated to be 104.3 ± 2.593 nm with a polydispersity index of 0.245 ± 0.019 in addition to ζ-potential of 0.434 ± 0.028 mV. Steady-state flux and permeability coefficient for ART-emulgel were estimated to be 0.651 ± 0.031 µg.cm2/h and 0.245 ± 0.011 cm/h, respectively. ART-emulgel demonstrated 43.18% reduction in COX-2 level; 52.28% drop in IL-1β, and 88.78% alleviation of Tumor Necrosis Factor-α (TNF-α) level when compared with monosodium-iodoacetate induced OA rats. ART-emulgel and injectable ART (intra-articular; I.A) portrayed minor synovial erosion compared with blank and diclofenac emulgel. Histopathological evidences indicated restoration of cartilage integrity followed by reduction of OARSI scores in ART-emulgel when compared with disease control animals.Conclusion: ART-emulgel is a potential dosage form for translating into a clinically viable product for the management of OA.
{"title":"Artemisinin emulgel ameliorates cartilage degradation in knee osteoarthritis: <i>in vitro</i> and <i>in vivo</i> studies.","authors":"Samiksha Thote, Atul Mourya, Shristi Arya, Hoshiyar Singh, Prashanth Kumar, Santosh Kumar Guru, Jitender Madan","doi":"10.1080/20415990.2024.2418281","DOIUrl":"https://doi.org/10.1080/20415990.2024.2418281","url":null,"abstract":"<p><p><b>Aim:</b> Laboratory scale-up of artemisinin-loaded emulgel (ART-emulgel) was carried out and characterized for therapeutic performance in osteoarthritis (OA).<b>Materials & methods:</b> The solubility of ART in various oils, surfactants and co-surfactants were screened for construction of pseudo ternary phase diagram (TPD), followed by scale-up of artemisinin loaded nanoemulsion (ART-NE). ART-NE was amalgamated with Carbopol Ultrez 10-NF to prepare ART-emulgel that was later characterized <i>in vitro</i> and <i>in vivo</i> to analyze therapeutic efficacy in monosodium-iodoacetate (MIA) induced knee OA.<b>Results:</b> The droplet diameter of ART-NE was estimated to be 104.3 ± 2.593 nm with a polydispersity index of 0.245 ± 0.019 in addition to ζ-potential of 0.434 ± 0.028 mV. Steady-state flux and permeability coefficient for ART-emulgel were estimated to be 0.651 ± 0.031 µg.cm<sup>2</sup>/h and 0.245 ± 0.011 cm/h, respectively. ART-emulgel demonstrated 43.18% reduction in COX-2 level; 52.28% drop in IL-1β, and 88.78% alleviation of Tumor Necrosis Factor-α (TNF-α) level when compared with monosodium-iodoacetate induced OA rats. ART-emulgel and injectable ART (intra-articular; I.A) portrayed minor synovial erosion compared with blank and diclofenac emulgel. Histopathological evidences indicated restoration of cartilage integrity followed by reduction of OARSI scores in ART-emulgel when compared with disease control animals.<b>Conclusion:</b> ART-emulgel is a potential dosage form for translating into a clinically viable product for the management of OA.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glioblastoma multiforme (GBM) is one of the most common and malignant brain tumors, with a high prevalence in elderly population. Most chemotherapeutic agents fail to reach the tumor site due to various challenges. However, smart nanocarriers have demonstrated excellent drug-loading capabilities, enabling them to cross the blood brain tumor barrier for the GBM treatment. Surface modification of nanocarriers has significantly enhanced their potential for targeting therapeutics. Moreover, recent innovations in drug therapies, such as the incorporation of theranostic agents in nanocarriers and antibody-drug conjugates, have offered newer insights for both diagnosis and treatment. This review focuses on recent advances in new therapeutic interventions for GBM, with an emphasis on the nanotheranostics systems to maximize therapeutic and diagnostic outcomes.
{"title":"Comprehensive insights into glioblastoma multiforme: drug delivery challenges and multimodal treatment strategies.","authors":"Ashish Dhiman, Dhwani Rana, Derajram Benival, Kalpna Garkhal","doi":"10.1080/20415990.2024.2415281","DOIUrl":"https://doi.org/10.1080/20415990.2024.2415281","url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is one of the most common and malignant brain tumors, with a high prevalence in elderly population. Most chemotherapeutic agents fail to reach the tumor site due to various challenges. However, smart nanocarriers have demonstrated excellent drug-loading capabilities, enabling them to cross the blood brain tumor barrier for the GBM treatment. Surface modification of nanocarriers has significantly enhanced their potential for targeting therapeutics. Moreover, recent innovations in drug therapies, such as the incorporation of theranostic agents in nanocarriers and antibody-drug conjugates, have offered newer insights for both diagnosis and treatment. This review focuses on recent advances in new therapeutic interventions for GBM, with an emphasis on the nanotheranostics systems to maximize therapeutic and diagnostic outcomes.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1080/20415990.2024.2408218
Pravin Patil, Mrunal Rahangdale, Krutika Sawant
Aim: The study explores glycerosomes as effective vesicular systems for transdermal delivery of atorvastatin (ATO) to overcome drawbacks related to its oral administration.Methodology: The objectives of this study were to formulate, by thin-film hydration method, optimize using definitive screening design and evaluate ATO-loaded glycerosomes (ATOG) which were then incorporated into patch followed by the evaluation of glycerosomes containing different concentration of glycerol.Results & discussion: Vesicle size, Polydispersity index (PDI), zeta potential, entrapment efficiency and loading capacity of spherical ATOG (0-30%w/w) showed 137.3-192d.nm, 0.292-0.403, -3.81 to-6.76mV, 80.03-92.77% and 5.80-6.40%, respectively. In-vitro release study showed sustained release, increased skin permeability and better cell viability than pure drug. ATOG patches showed greater skin permeability than pure drug and ATO-liposomal patches.Conclusion: The study concludes that ATOGs are promising for effective transdermal delivery.
目的:本研究探讨了甘油囊作为阿托伐他汀(ATO)透皮给药的有效囊泡系统,以克服口服给药的相关缺点:本研究的目的是通过薄膜水合法配制、使用确定性筛选设计进行优化并评估负载 ATO 的甘油囊(ATOG),然后将其纳入贴片,接着评估含有不同浓度甘油的甘油囊:球形 ATOG(0-30%w/w)的囊泡大小、多分散指数(PDI)、ZETA电位、夹持效率和负载能力分别为 137.3-192d.nm、0.292-0.403、-3.81-6.76mV、80.03-92.77% 和 5.80-6.40%。体外释放研究显示,与纯药物相比,ATOG 贴片具有持续释放、皮肤渗透性更强和细胞存活率更高的特点。ATOG 贴片的皮肤渗透性高于纯药物和 ATO 脂质体贴片:该研究得出结论,ATOGs 有望实现有效的透皮给药。
{"title":"Atorvastatin loaded glycerosomal patch as an effective transdermal drug delivery: optimization and evaluation.","authors":"Pravin Patil, Mrunal Rahangdale, Krutika Sawant","doi":"10.1080/20415990.2024.2408218","DOIUrl":"https://doi.org/10.1080/20415990.2024.2408218","url":null,"abstract":"<p><p><b>Aim:</b> The study explores glycerosomes as effective vesicular systems for transdermal delivery of atorvastatin (ATO) to overcome drawbacks related to its oral administration.<b>Methodology:</b> The objectives of this study were to formulate, by thin-film hydration method, optimize using definitive screening design and evaluate ATO-loaded glycerosomes (ATOG) which were then incorporated into patch followed by the evaluation of glycerosomes containing different concentration of glycerol.<b>Results & discussion:</b> Vesicle size, Polydispersity index (PDI), zeta potential, entrapment efficiency and loading capacity of spherical ATOG (0-30%w/w) showed 137.3-192d.nm, 0.292-0.403, -3.81 to-6.76mV, 80.03-92.77% and 5.80-6.40%, respectively. <i>In-vitro</i> release study showed sustained release, increased skin permeability and better cell viability than pure drug. ATOG patches showed greater skin permeability than pure drug and ATO-liposomal patches.<b>Conclusion:</b> The study concludes that ATOGs are promising for effective transdermal delivery.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1080/20415990.2024.2414732
Peter Timmins
{"title":"Industry Update: the latest developments in the field of therapeutic delivery, July 2024.","authors":"Peter Timmins","doi":"10.1080/20415990.2024.2414732","DOIUrl":"https://doi.org/10.1080/20415990.2024.2414732","url":null,"abstract":"","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1080/20415990.2024.2411943
Janhavi Bhavsar, Kaustubh Kasture, Bhagyashree V Salvi, Pravin Shende
An established view in genetic engineering dictates an increase in the discovery of therapeutic peptides to enable the treatment of multiple diseases. The use of hypodermic needle for delivery of proteins and peptides occurs due to the hydrophilic nature, sensitivity toward proteolytic enzymes and high molecular weight. The non-invasive nature of the transdermal delivery technique offers multiple advantages over the invasive route to release drugs directly into the systemic circulation to enhance bioavailability, better patient compliance, reduced toxicity and local irritability. The transdermal route seems highly desirable from the pharmaco-therapeutic and patient compliance point of view, however, the lipophilic barrier of skin restricts the application. The use of several techniques like electrical methods (iontophoresis, sonophoresis etc.), chemical penetration enhancers (e.g. protease inhibitors, penetration enhancers, etc.) and nanocarriers (dendrimers, lipid nanocapsules, etc.) are utilized to improve the passage of drug molecules across the biomembranes. Additionally, such clinical interventions facilitate the physicochemical characteristics of peptides, to enable effective preservation, conveyance and release of therapeutic agents. Moreover, strategies ensure the attainment of the intended targets and enhance treatment outcomes for multiple diseases. This review article focuses on the techniques of peptide transportation across the skin to advance the delivery approaches and therapeutic efficiency.
{"title":"Strategies for transportation of peptides across the skin for treatment of multiple diseases.","authors":"Janhavi Bhavsar, Kaustubh Kasture, Bhagyashree V Salvi, Pravin Shende","doi":"10.1080/20415990.2024.2411943","DOIUrl":"https://doi.org/10.1080/20415990.2024.2411943","url":null,"abstract":"<p><p>An established view in genetic engineering dictates an increase in the discovery of therapeutic peptides to enable the treatment of multiple diseases. The use of hypodermic needle for delivery of proteins and peptides occurs due to the hydrophilic nature, sensitivity toward proteolytic enzymes and high molecular weight. The non-invasive nature of the transdermal delivery technique offers multiple advantages over the invasive route to release drugs directly into the systemic circulation to enhance bioavailability, better patient compliance, reduced toxicity and local irritability. The transdermal route seems highly desirable from the pharmaco-therapeutic and patient compliance point of view, however, the lipophilic barrier of skin restricts the application. The use of several techniques like electrical methods (iontophoresis, sonophoresis etc.), chemical penetration enhancers (e.g. protease inhibitors, penetration enhancers, etc.) and nanocarriers (dendrimers, lipid nanocapsules, etc.) are utilized to improve the passage of drug molecules across the biomembranes. Additionally, such clinical interventions facilitate the physicochemical characteristics of peptides, to enable effective preservation, conveyance and release of therapeutic agents. Moreover, strategies ensure the attainment of the intended targets and enhance treatment outcomes for multiple diseases. This review article focuses on the techniques of peptide transportation across the skin to advance the delivery approaches and therapeutic efficiency.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1080/20415990.2024.2408214
Mengistie Diress, Armin Mooranian, Hani Al-Salami
{"title":"Industry updates in the field of therapeutic delivery in June 2024.","authors":"Mengistie Diress, Armin Mooranian, Hani Al-Salami","doi":"10.1080/20415990.2024.2408214","DOIUrl":"https://doi.org/10.1080/20415990.2024.2408214","url":null,"abstract":"","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osteoarthritis (OSA) is a prevalent joint disorder characterized by losing articular cartilage, primarily affecting the hip, knee and spine joints. The impact of OSA offers a major challenge to health systems globally. Therapeutic approaches encompass surgical interventions, non-pharmacological therapies (exercise, rehabilitation, behavioral interventions) and pharmacological treatments. Inflammatory processes within OSA joints are regulated by pro-inflammatory and anti-inflammatory cytokines. Etodolac, a COX-2-selective inhibitor, is the gold standard for OSA management and uniquely does not inhibit gastric prostaglandins. This comprehensive review offers insights into OSA's pathophysiology, genetic factors and biological determinants influencing disease progression. Emphasis is placed on the pivotal role of etodolac in OSA management, supported by both preclinical and clinical evidences in topical drug delivery. Notably, in-silico docking studies suggested potential synergies between etodolac and baicalein, considering ADAMTS-4, COX-2, MMP-3 and MMP-13 as essential therapeutic targets. Integration of artificial neural network (ANN) techniques with nanotechnology approaches emerges as a promising strategy for optimizing and personalizing topical etodolac delivery. Furthermore, the synergistic potential of etodolac and baicalein warrants in-depth exploration. Hence, by embracing cutting-edge technologies like ANN and nanomedicine, the optimization of topical etodolac delivery could guide a new era of OSA treatment.
骨关节炎(OSA)是一种以关节软骨流失为特征的常见关节疾病,主要影响髋关节、膝关节和脊柱关节。OSA 的影响给全球卫生系统带来了重大挑战。治疗方法包括手术干预、非药物疗法(运动、康复、行为干预)和药物疗法。OSA 关节内的炎症过程受促炎症和抗炎症细胞因子的调节。依托度酸是一种 COX-2 选择性抑制剂,是治疗 OSA 的黄金标准,而且不会抑制胃前列腺素。本综述深入探讨了 OSA 的病理生理学、遗传因素和影响疾病进展的生物学决定因素。在局部给药的临床前和临床证据支持下,重点介绍了依托度酸在 OSA 治疗中的关键作用。值得注意的是,在将 ADAMTS-4、COX-2、MMP-3 和 MMP-13 作为基本治疗靶点的同时,硅内对接研究表明依托度酸和黄芩苷之间存在潜在的协同作用。将人工神经网络(ANN)技术与纳米技术方法相结合,是优化和个性化局部依托度酸给药的有效策略。此外,依托度酸和黄芩苷的协同潜力也值得深入探讨。因此,通过采用 ANN 和纳米医学等前沿技术,局部依托度酸给药的优化将引领 OSA 治疗进入一个新时代。
{"title":"Etodolac utility in osteoarthritis: drug delivery challenges, topical nanotherapeutic strategies and potential synergies.","authors":"Pavani Gaddala, Shalki Choudhary, Sheshank Sethi, Vaskuri Gs Sainaga Jyothi, Chantibabu Katta, Deepankar Bahuguna, Pankaj Kumar Singh, Manisha Pandey, Jitender Madan","doi":"10.1080/20415990.2024.2405456","DOIUrl":"https://doi.org/10.1080/20415990.2024.2405456","url":null,"abstract":"<p><p>Osteoarthritis (OSA) is a prevalent joint disorder characterized by losing articular cartilage, primarily affecting the hip, knee and spine joints. The impact of OSA offers a major challenge to health systems globally. Therapeutic approaches encompass surgical interventions, non-pharmacological therapies (exercise, rehabilitation, behavioral interventions) and pharmacological treatments. Inflammatory processes within OSA joints are regulated by pro-inflammatory and anti-inflammatory cytokines. Etodolac, a COX-2-selective inhibitor, is the gold standard for OSA management and uniquely does not inhibit gastric prostaglandins. This comprehensive review offers insights into OSA's pathophysiology, genetic factors and biological determinants influencing disease progression. Emphasis is placed on the pivotal role of etodolac in OSA management, supported by both preclinical and clinical evidences in topical drug delivery. Notably, <i>in</i>-<i>silico</i> docking studies suggested potential synergies between etodolac and baicalein, considering ADAMTS-4, COX-2, MMP-3 and MMP-13 as essential therapeutic targets. Integration of artificial neural network (ANN) techniques with nanotechnology approaches emerges as a promising strategy for optimizing and personalizing topical etodolac delivery. Furthermore, the synergistic potential of etodolac and baicalein warrants in-depth exploration. Hence, by embracing cutting-edge technologies like ANN and nanomedicine, the optimization of topical etodolac delivery could guide a new era of OSA treatment.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1080/20415990.2024.2401307
Jessica López-Espinosa, Peter Park, Morgan Holcomb, Biana Godin, Sonia Villapol
Neurological diseases, characterized by neuroinflammation and neurodegeneration, impose a significant global burden, contributing to substantial morbidity, disability and mortality. A common feature of these disorders, including stroke, traumatic brain injury and Alzheimer's disease, is the impairment of the blood-brain barrier (BBB), a critical structure for maintaining brain homeostasis. The compromised BBB in neurodegenerative conditions poses a significant challenge for effective treatment, as it allows harmful substances to accumulate in the brain. Nanomedicine offers a promising approach to overcoming this barrier, with nanoparticles (NPs) engineered to deliver therapeutic agents directly to affected brain regions. This review explores the classification and design of NPs, divided into organic and inorganic categories and further categorized based on their chemical and physical properties. These characteristics influence the ability of NPs to carry and release therapeutic agents, target specific tissues and ensure appropriate clearance from the body. The review emphasizes the potential of NPs to enhance the diagnosis and treatment of neurodegenerative diseases through targeted delivery, improved drug bioavailability and real-time therapeutic efficacy monitoring. By addressing the challenges of the compromised BBB and targeting inflammatory biomarkers, NPs represent a cutting-edge strategy in managing neurological disorders, promising better patient outcomes.
{"title":"Nanotechnology-driven therapies for neurodegenerative diseases: a comprehensive review.","authors":"Jessica López-Espinosa, Peter Park, Morgan Holcomb, Biana Godin, Sonia Villapol","doi":"10.1080/20415990.2024.2401307","DOIUrl":"https://doi.org/10.1080/20415990.2024.2401307","url":null,"abstract":"<p><p>Neurological diseases, characterized by neuroinflammation and neurodegeneration, impose a significant global burden, contributing to substantial morbidity, disability and mortality. A common feature of these disorders, including stroke, traumatic brain injury and Alzheimer's disease, is the impairment of the blood-brain barrier (BBB), a critical structure for maintaining brain homeostasis. The compromised BBB in neurodegenerative conditions poses a significant challenge for effective treatment, as it allows harmful substances to accumulate in the brain. Nanomedicine offers a promising approach to overcoming this barrier, with nanoparticles (NPs) engineered to deliver therapeutic agents directly to affected brain regions. This review explores the classification and design of NPs, divided into organic and inorganic categories and further categorized based on their chemical and physical properties. These characteristics influence the ability of NPs to carry and release therapeutic agents, target specific tissues and ensure appropriate clearance from the body. The review emphasizes the potential of NPs to enhance the diagnosis and treatment of neurodegenerative diseases through targeted delivery, improved drug bioavailability and real-time therapeutic efficacy monitoring. By addressing the challenges of the compromised BBB and targeting inflammatory biomarkers, NPs represent a cutting-edge strategy in managing neurological disorders, promising better patient outcomes.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142295997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1080/20415990.2024.2346047
A. C. Bisen, Ayush Dubey, Sristi Agrawal, Arpon Biswas, K. S. Rawat, Saurabh Srivastava, R. Bhatta
{"title":"Recent updates on ocular disease management with ophthalmic ointments","authors":"A. C. Bisen, Ayush Dubey, Sristi Agrawal, Arpon Biswas, K. S. Rawat, Saurabh Srivastava, R. Bhatta","doi":"10.1080/20415990.2024.2346047","DOIUrl":"https://doi.org/10.1080/20415990.2024.2346047","url":null,"abstract":"","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141359954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1080/20415990.2024.2354115
Ashok Kumar Janakiraman, Joanne Yap, Ramkanth Sundarapandian, Kai Bin Liew, Vetriselvan Subramaniyan, S. Kayarohanam
{"title":"Fabrication and characterization of cocoa butter-based caffeine fast-melting tablets","authors":"Ashok Kumar Janakiraman, Joanne Yap, Ramkanth Sundarapandian, Kai Bin Liew, Vetriselvan Subramaniyan, S. Kayarohanam","doi":"10.1080/20415990.2024.2354115","DOIUrl":"https://doi.org/10.1080/20415990.2024.2354115","url":null,"abstract":"","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141356766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}