Gichan Yun;Kyeongwon Jeong;Haidam Choi;Seunghyun Nam;Chaerin Oh;Hyunjoo Jenny Lee;Sohmyung Ha;Minkyu Je
{"title":"An Ultrasound Receiver With Bandwidth-Enhanced Current Conveyor and Element-Level Ultrasound Transmitter for Ultrasound Imaging Systems","authors":"Gichan Yun;Kyeongwon Jeong;Haidam Choi;Seunghyun Nam;Chaerin Oh;Hyunjoo Jenny Lee;Sohmyung Ha;Minkyu Je","doi":"10.1109/LSSC.2024.3369605","DOIUrl":null,"url":null,"abstract":"In this letter, we present an ultrasound (US) imaging system with a low-noise US receiver (RX) and an element-level US transmitter (TX) for a capacitive micromachined ultrasonic transducer (CMUT). The proposed US RX isolates the input parasitic capacitance \n<inline-formula> <tex-math>$(C_{P})$ </tex-math></inline-formula>\n from the front-end transimpedance stage by using a bandwidth-enhanced current conveyor. By reducing the effects of the \n<inline-formula> <tex-math>$C_{P}$ </tex-math></inline-formula>\n, the noise and power efficiency are improved compared to the conventional current readout circuits. Also, a US TX having a class-D output stage is implemented to excite the CMUT with 30-V unipolar pulses. Fabricated in a 180-nm BCD process, the proposed US RX achieves input-referred noise of 2.0 pA/\n<inline-formula> <tex-math>$\\sqrt {\\textit {Hz}}$ </tex-math></inline-formula>\n at 7.5 MHz and a bandwidth of 18 MHz with 25-pF CMUT capacitance while consuming 3.62 mW.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"98-101"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10444015/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In this letter, we present an ultrasound (US) imaging system with a low-noise US receiver (RX) and an element-level US transmitter (TX) for a capacitive micromachined ultrasonic transducer (CMUT). The proposed US RX isolates the input parasitic capacitance
$(C_{P})$
from the front-end transimpedance stage by using a bandwidth-enhanced current conveyor. By reducing the effects of the
$C_{P}$
, the noise and power efficiency are improved compared to the conventional current readout circuits. Also, a US TX having a class-D output stage is implemented to excite the CMUT with 30-V unipolar pulses. Fabricated in a 180-nm BCD process, the proposed US RX achieves input-referred noise of 2.0 pA/
$\sqrt {\textit {Hz}}$
at 7.5 MHz and a bandwidth of 18 MHz with 25-pF CMUT capacitance while consuming 3.62 mW.