{"title":"Concept Maps Afford Connections From Mathematics and Physics to Electrical Engineering Courses","authors":"Carlotta Berry;Leanne Holder;Nicole Pfiester;Tracy Weyand","doi":"10.1109/TE.2024.3367603","DOIUrl":null,"url":null,"abstract":"Contribution: Visual maps that illustrate how mathematics, physics, and electrical engineering classes are connected to each other during the first two years of the electrical engineering curriculum were developed. Key terminology and differences in presentation between fields are discussed. Background: Experience has shown that engineering students struggle when they need to use an approach from their mathematics or physics courses in their first- or second-year engineering courses. In particular, students have difficulty making connections between what they learned in mathematics and physics and how it applies to engineering problems. Improving students’ ability to identify the connections between fields could increase student resilience in their engineering coursework. Research Questions: 1) Can visual representations of topic connections between fields across the entry-level engineering curriculum increase student’s motivation for learning topics in physics and mathematics and improve their problem solving ability? 2) Are there language barriers or other differences between fields that hinder student learning? Methodology: A multidisciplinary team of faculty members from mathematics, physics, and electrical engineering developed visual representations of the links between the core electrical engineering, physics, and mathematics concepts required to solve problems that students will see in their early electrical engineering coursework. Inconsistencies in terminology or notation were explored and documented. Findings: The developed visual aids, coined systematic approach to problem solving (SAPS) maps, describe a mechanism for linking concepts and skills across the technical courses in the first two years of the electrical engineering curriculum.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10466596/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Contribution: Visual maps that illustrate how mathematics, physics, and electrical engineering classes are connected to each other during the first two years of the electrical engineering curriculum were developed. Key terminology and differences in presentation between fields are discussed. Background: Experience has shown that engineering students struggle when they need to use an approach from their mathematics or physics courses in their first- or second-year engineering courses. In particular, students have difficulty making connections between what they learned in mathematics and physics and how it applies to engineering problems. Improving students’ ability to identify the connections between fields could increase student resilience in their engineering coursework. Research Questions: 1) Can visual representations of topic connections between fields across the entry-level engineering curriculum increase student’s motivation for learning topics in physics and mathematics and improve their problem solving ability? 2) Are there language barriers or other differences between fields that hinder student learning? Methodology: A multidisciplinary team of faculty members from mathematics, physics, and electrical engineering developed visual representations of the links between the core electrical engineering, physics, and mathematics concepts required to solve problems that students will see in their early electrical engineering coursework. Inconsistencies in terminology or notation were explored and documented. Findings: The developed visual aids, coined systematic approach to problem solving (SAPS) maps, describe a mechanism for linking concepts and skills across the technical courses in the first two years of the electrical engineering curriculum.