Shihao Deng, Yue Li, Shengzhao Li, Shen Yuan, Hao Zhu, Ju Bai, Jingyi Xu, Lu Peng, Tie Li, Ting Zhang
{"title":"A multifunctional flexible sensor based on PI-MXene/SrTiO3 hybrid aerogel for tactile perception","authors":"Shihao Deng, Yue Li, Shengzhao Li, Shen Yuan, Hao Zhu, Ju Bai, Jingyi Xu, Lu Peng, Tie Li, Ting Zhang","doi":"10.1016/j.xinn.2024.100596","DOIUrl":null,"url":null,"abstract":"The inadequacy of tactile perception systems in humanoid robotic manipulators limits the breadth of available robotic applications. Here, we designed a multifunctional flexible tactile sensor for robotic fingers that provides capabilities similar to those of human skin sensing modalities. This sensor utilizes a novel PI-MXene/SrTiO hybrid aerogel developed as a sensing unit with the additional abilities of electromagnetic transmission and thermal insulation to adapt to certain complex environments. Moreover, polyimide (PI) provides a high-strength skeleton, MXene realizes a pressure-sensing function, and MXene/SrTiO achieves both thermoelectric and infrared radiation response behaviors. Furthermore, via the pressure response mechanism and unsteady-state heat transfer, these aerogel-derived flexible sensors realize multimodal sensing and recognition capabilities with minimal cross-coupling. They can differentiate among 13 types of hardness and four types of material from objects with accuracies of 94% and 85%, respectively, using a decision tree algorithm. In addition, based on the infrared radiation-sensing function, a sensory array was assembled, and different shapes of objects were successfully recognized. These findings demonstrate that this PI-MXene/SrTiO aerogel provides a new concept for expanding the multifunctionality of flexible sensors such that the manipulator can more closely reach the tactile level of the human hand. This advancement reduces the difficulty of integrating humanoid robots and provides a new breadth of application scenarios for their possibility.","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"34 1","pages":""},"PeriodicalIF":33.2000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2024.100596","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The inadequacy of tactile perception systems in humanoid robotic manipulators limits the breadth of available robotic applications. Here, we designed a multifunctional flexible tactile sensor for robotic fingers that provides capabilities similar to those of human skin sensing modalities. This sensor utilizes a novel PI-MXene/SrTiO hybrid aerogel developed as a sensing unit with the additional abilities of electromagnetic transmission and thermal insulation to adapt to certain complex environments. Moreover, polyimide (PI) provides a high-strength skeleton, MXene realizes a pressure-sensing function, and MXene/SrTiO achieves both thermoelectric and infrared radiation response behaviors. Furthermore, via the pressure response mechanism and unsteady-state heat transfer, these aerogel-derived flexible sensors realize multimodal sensing and recognition capabilities with minimal cross-coupling. They can differentiate among 13 types of hardness and four types of material from objects with accuracies of 94% and 85%, respectively, using a decision tree algorithm. In addition, based on the infrared radiation-sensing function, a sensory array was assembled, and different shapes of objects were successfully recognized. These findings demonstrate that this PI-MXene/SrTiO aerogel provides a new concept for expanding the multifunctionality of flexible sensors such that the manipulator can more closely reach the tactile level of the human hand. This advancement reduces the difficulty of integrating humanoid robots and provides a new breadth of application scenarios for their possibility.
期刊介绍:
The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals.
The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide.
Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.