Routes to high-performance layered oxide cathodes for sodium-ion batteries

IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Society Reviews Pub Date : 2024-03-13 DOI:10.1039/D3CS00929G
Jingqiang Wang, Yan-Fang Zhu, Yu Su, Jun-Xu Guo, Shuangqiang Chen, Hua-Kun Liu, Shi-Xue Dou, Shu-Lei Chou and Yao Xiao
{"title":"Routes to high-performance layered oxide cathodes for sodium-ion batteries","authors":"Jingqiang Wang, Yan-Fang Zhu, Yu Su, Jun-Xu Guo, Shuangqiang Chen, Hua-Kun Liu, Shi-Xue Dou, Shu-Lei Chou and Yao Xiao","doi":"10.1039/D3CS00929G","DOIUrl":null,"url":null,"abstract":"<p >Sodium-ion batteries (SIBs) are experiencing a large-scale renaissance to supplement or replace expensive lithium-ion batteries (LIBs) and low energy density lead-acid batteries in electrical energy storage systems and other applications. In this case, layered oxide materials have become one of the most popular cathode candidates for SIBs because of their low cost and comparatively facile synthesis method. However, the intrinsic shortcomings of layered oxide cathodes, which severely limit their commercialization process, urgently need to be addressed. In this review, inherent challenges associated with layered oxide cathodes for SIBs, such as their irreversible multiphase transition, poor air stability, and low energy density, are systematically summarized and discussed, together with strategies to overcome these dilemmas through bulk phase modulation, surface/interface modification, functional structure manipulation, and cationic and anionic redox optimization. Emphasis is placed on investigating variations in the chemical composition and structural configuration of layered oxide cathodes and how they affect the electrochemical behavior of the cathodes to illustrate how these issues can be addressed. The summary of failure mechanisms and corresponding modification strategies of layered oxide cathodes presented herein provides a valuable reference for scientific and practical issues related to the development of SIBs.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":null,"pages":null},"PeriodicalIF":40.4000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cs/d3cs00929g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-ion batteries (SIBs) are experiencing a large-scale renaissance to supplement or replace expensive lithium-ion batteries (LIBs) and low energy density lead-acid batteries in electrical energy storage systems and other applications. In this case, layered oxide materials have become one of the most popular cathode candidates for SIBs because of their low cost and comparatively facile synthesis method. However, the intrinsic shortcomings of layered oxide cathodes, which severely limit their commercialization process, urgently need to be addressed. In this review, inherent challenges associated with layered oxide cathodes for SIBs, such as their irreversible multiphase transition, poor air stability, and low energy density, are systematically summarized and discussed, together with strategies to overcome these dilemmas through bulk phase modulation, surface/interface modification, functional structure manipulation, and cationic and anionic redox optimization. Emphasis is placed on investigating variations in the chemical composition and structural configuration of layered oxide cathodes and how they affect the electrochemical behavior of the cathodes to illustrate how these issues can be addressed. The summary of failure mechanisms and corresponding modification strategies of layered oxide cathodes presented herein provides a valuable reference for scientific and practical issues related to the development of SIBs.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为钠离子电池开发高性能层状氧化物阴极的途径。
钠离子电池(SIB)正在大规模复兴,以补充或取代电能存储系统和其他应用中昂贵的锂离子电池(LIB)和低能量密度铅酸电池。在这种情况下,层状氧化物材料因其低成本和相对简便的合成方法而成为最受欢迎的 SIB 正极候选材料之一。然而,层状氧化物阴极的内在缺陷严重限制了其商业化进程,亟待解决。本综述系统地总结和讨论了用于 SIB 的层状氧化物阴极所面临的固有挑战,如不可逆的多相转变、较差的空气稳定性和较低的能量密度,以及通过体相调制、表面/界面改性、功能结构操作以及阳离子和阴离子氧化还原优化来克服这些困境的策略。重点是研究层状氧化物阴极的化学成分和结构配置的变化及其如何影响阴极的电化学行为,以说明如何解决这些问题。本文总结了层状氧化物阴极的失效机制和相应的改性策略,为开发 SIB 的相关科学和实际问题提供了宝贵的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Society Reviews
Chemical Society Reviews 化学-化学综合
CiteScore
80.80
自引率
1.10%
发文量
345
审稿时长
6.0 months
期刊介绍: Chemical Society Reviews is published by: Royal Society of Chemistry. Focus: Review articles on topics of current interest in chemistry; Predecessors: Quarterly Reviews, Chemical Society (1947–1971); Current title: Since 1971; Impact factor: 60.615 (2021); Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences
期刊最新文献
From sugars to aliphatic amines: as sweet as it sounds? Production and applications of bio-based aliphatic amines. Metal-phenolic network composites: from fundamentals to applications. Reactive oxygen species-mediated organic long-persistent luminophores light up biomedicine: from two-component separated nano-systems to integrated uni-luminophores. From cyclotrons to chromatography and beyond: a guide to the production and purification of theranostic radiometals. Metal-support interactions in metal oxide-supported atomic, cluster, and nanoparticle catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1