首页 > 最新文献

Chemical Society Reviews最新文献

英文 中文
Recent advances in peptide macrocyclization strategies. 多肽大环化策略的最新进展。
IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-19 DOI: 10.1039/d3cs01066j
Pengyuan Fang, Wing-Ka Pang, Shouhu Xuan, Wai-Lun Chan, Ken Cham-Fai Leung

Recently, owing to their special spatial structures, peptide-based macrocycles have shown tremendous promise and aroused great interest in multidisciplinary research ranging from potent antibiotics against resistant strains to functional biomaterials with novel properties. Besides traditional monocyclic peptides, many fascinating polycyclic and remarkable higher-order cyclic, spherical and cylindric peptidic systems have come into the limelight owing to breakthroughs in various chemical (e.g., native chemical ligation and transition metal catalysis), biological (e.g., post-translational enzymatic modification and genetic code reprogramming), and supramolecular (e.g., mechanically interlocked, metal-directed folding and self-assembly via noncovalent interactions) macrocyclization strategies developed in recent decades. In this tutorial review, diverse state-of-the-art macrocyclization methodologies and techniques for peptides and peptidomimetics are surveyed and discussed, with insights into their practical advantages and intrinsic limitations. Finally, the synthetic-technical aspects, current unresolved challenges, and outlook of this field are discussed.

最近,由于其特殊的空间结构,以肽为基础的大环已显示出巨大的前景,并引起了多学科研究的极大兴趣,从抗击耐药菌株的强效抗生素到具有新特性的功能性生物材料,不一而足。除了传统的单环肽外,由于在各种化学(如原生化学连接和过渡金属催化)、生物(如翻译后酶修饰)和生物技术领域取得了突破性进展,许多迷人的多环和非凡的高阶环状、球状和圆柱状肽系统已成为人们关注的焦点、由于近几十年来在各种化学(如原生化学连接和过渡金属催化)、生物(如翻译后酶修饰和遗传密码重编程)和超分子(如通过非共价相互作用的机械连锁、金属定向折叠和自组装)大环化策略方面取得了突破性进展,硅idic 系统已成为人们关注的焦点。在这篇教程综述中,我们考察并讨论了肽和拟肽的各种最新大环化方法和技术,并深入探讨了它们的实际优势和内在局限。最后,还讨论了该领域的合成技术方面、当前尚未解决的挑战和前景。
{"title":"Recent advances in peptide macrocyclization strategies.","authors":"Pengyuan Fang, Wing-Ka Pang, Shouhu Xuan, Wai-Lun Chan, Ken Cham-Fai Leung","doi":"10.1039/d3cs01066j","DOIUrl":"https://doi.org/10.1039/d3cs01066j","url":null,"abstract":"<p><p>Recently, owing to their special spatial structures, peptide-based macrocycles have shown tremendous promise and aroused great interest in multidisciplinary research ranging from potent antibiotics against resistant strains to functional biomaterials with novel properties. Besides traditional monocyclic peptides, many fascinating polycyclic and remarkable higher-order cyclic, spherical and cylindric peptidic systems have come into the limelight owing to breakthroughs in various chemical (<i>e.g.</i>, native chemical ligation and transition metal catalysis), biological (<i>e.g.</i>, post-translational enzymatic modification and genetic code reprogramming), and supramolecular (<i>e.g.</i>, mechanically interlocked, metal-directed folding and self-assembly <i>via</i> noncovalent interactions) macrocyclization strategies developed in recent decades. In this tutorial review, diverse state-of-the-art macrocyclization methodologies and techniques for peptides and peptidomimetics are surveyed and discussed, with insights into their practical advantages and intrinsic limitations. Finally, the synthetic-technical aspects, current unresolved challenges, and outlook of this field are discussed.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioorthogonally activated probes for precise fluorescence imaging. 用于精确荧光成像的生物正交激活探针。
IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-18 DOI: 10.1039/d3cs00883e
Youxin Fu, Xing Zhang, Luling Wu, Miaomiao Wu, Tony D James, Run Zhang

Over the past two decades, bioorthogonal chemistry has undergone a remarkable development, challenging traditional assumptions in biology and medicine. Recent advancements in the design of probes tailored for bioorthogonal applications have met the increasing demand for precise imaging, facilitating the exploration of complex biological systems. These state-of-the-art probes enable highly sensitive, low background, in situ imaging of biological species and events within live organisms, achieving resolutions comparable to the size of the biomolecule under investigation. This review provides a comprehensive examination of various categories of bioorthogonally activated in situ fluorescent labels. It highlights the intricate design and benefits of bioorthogonal chemistry for precise in situ imaging, while also discussing future prospects in this rapidly evolving field.

在过去二十年里,生物正交化学经历了令人瞩目的发展,对生物学和医学的传统假设提出了挑战。为生物正交应用量身定制的探针设计取得了最新进展,满足了对精确成像日益增长的需求,促进了对复杂生物系统的探索。这些最先进的探针能够对生物物种和活体生物体内的事件进行高灵敏度、低背景的原位成像,实现与所研究生物分子大小相当的分辨率。本综述全面探讨了各类生物原位激活荧光标签。它强调了生物正交化学在精确原位成像方面的复杂设计和优势,同时还讨论了这一快速发展领域的未来前景。
{"title":"Bioorthogonally activated probes for precise fluorescence imaging.","authors":"Youxin Fu, Xing Zhang, Luling Wu, Miaomiao Wu, Tony D James, Run Zhang","doi":"10.1039/d3cs00883e","DOIUrl":"10.1039/d3cs00883e","url":null,"abstract":"<p><p>Over the past two decades, bioorthogonal chemistry has undergone a remarkable development, challenging traditional assumptions in biology and medicine. Recent advancements in the design of probes tailored for bioorthogonal applications have met the increasing demand for precise imaging, facilitating the exploration of complex biological systems. These state-of-the-art probes enable highly sensitive, low background, <i>in situ</i> imaging of biological species and events within live organisms, achieving resolutions comparable to the size of the biomolecule under investigation. This review provides a comprehensive examination of various categories of bioorthogonally activated <i>in situ</i> fluorescent labels. It highlights the intricate design and benefits of bioorthogonal chemistry for precise <i>in situ</i> imaging, while also discussing future prospects in this rapidly evolving field.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A critical review on Li-ion transport, chemistry and structure of ceramic-polymer composite electrolytes for solid state batteries. 关于固态电池用陶瓷-聚合物复合电解质的锂离子传输、化学和结构的重要综述。
IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-18 DOI: 10.1039/d4cs00214h
Sara Catherine Sand, Jennifer L M Rupp, Bilge Yildiz

In the transition to safer, more energy-dense solid state batteries, polymer-ceramic composite electrolytes may offer a potential route to achieve simultaneously high Li-ion conductivity and enhanced mechanical stability. Despite numerous studies on the polymer-ceramic composite electrolytes, disagreements persist on whether the polymer or the ceramic is positively impacted in their constituent ionic conductivity for such composite electrolytes, and even whether the interface is a blocking layer or a highly conductive lithium ion path. This lack of understanding limits the design of effective composite solid electrolytes. By thorough and critical analysis of the data collected in the field over the last three decades, we present arguments for lithium conduction through the bulk of the polymer, ceramic, or their interface. From this analysis, we can conclude that the unexpectedly high conductivity reported for some ceramic-polymer composites cannot be accounted for by the ceramic phase alone. There is evidence to support the theory that the Li-ion conductivity in the polymer phase increases along this interface in contact with the ceramic. The potential mechanisms for this include increased free volume, decreased crystallinity, and modulated Lewis acid-base effects in the polymer, with the former two to be the more likely mechanisms. Future work in this field requires understanding these factors more quantitatively, and tuning of the ceramic surface chemistry and morphology in order to obtain targeted structural modifications in the polymer phase.

在向更安全、能量密度更高的固态电池过渡的过程中,聚合物-陶瓷复合电解质可能是同时实现高锂离子电导率和增强机械稳定性的潜在途径。尽管对聚合物-陶瓷复合电解质进行了大量研究,但对于此类复合电解质的离子导电性是由聚合物还是陶瓷的成分产生积极影响,甚至是界面是阻挡层还是高导电性锂离子通道,仍然存在分歧。这种缺乏了解的情况限制了有效复合固体电解质的设计。通过对过去三十年在该领域收集到的数据进行全面和批判性的分析,我们提出了通过聚合物、陶瓷或它们的界面进行锂传导的论据。通过分析,我们可以得出结论,某些陶瓷-聚合物复合材料出乎意料的高导电性并不能仅由陶瓷相来解释。有证据支持聚合物相中的锂离子电导率沿着与陶瓷接触的界面增加的理论。其潜在机制包括聚合物中自由体积的增加、结晶度的降低和路易斯酸碱效应的调节,其中前两种机制更有可能发生。该领域未来的工作需要更定量地了解这些因素,并对陶瓷表面化学和形态进行调整,以便有针对性地改变聚合物相的结构。
{"title":"A critical review on Li-ion transport, chemistry and structure of ceramic-polymer composite electrolytes for solid state batteries.","authors":"Sara Catherine Sand, Jennifer L M Rupp, Bilge Yildiz","doi":"10.1039/d4cs00214h","DOIUrl":"https://doi.org/10.1039/d4cs00214h","url":null,"abstract":"<p><p>In the transition to safer, more energy-dense solid state batteries, polymer-ceramic composite electrolytes may offer a potential route to achieve simultaneously high Li-ion conductivity and enhanced mechanical stability. Despite numerous studies on the polymer-ceramic composite electrolytes, disagreements persist on whether the polymer or the ceramic is positively impacted in their constituent ionic conductivity for such composite electrolytes, and even whether the interface is a blocking layer or a highly conductive lithium ion path. This lack of understanding limits the design of effective composite solid electrolytes. By thorough and critical analysis of the data collected in the field over the last three decades, we present arguments for lithium conduction through the bulk of the polymer, ceramic, or their interface. From this analysis, we can conclude that the unexpectedly high conductivity reported for some ceramic-polymer composites cannot be accounted for by the ceramic phase alone. There is evidence to support the theory that the Li-ion conductivity in the polymer phase increases along this interface in contact with the ceramic. The potential mechanisms for this include increased free volume, decreased crystallinity, and modulated Lewis acid-base effects in the polymer, with the former two to be the more likely mechanisms. Future work in this field requires understanding these factors more quantitatively, and tuning of the ceramic surface chemistry and morphology in order to obtain targeted structural modifications in the polymer phase.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemical Society Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1