Eleanor Kearns, Rachel E. Siegel, Deanna M. D’Alessandro, Ji-Woong Lee, Louise A. Berben
In this viewpoint article, we give a brief overview definition of reactive carbon capture (RCC) and its relationship to traditional carbon capture (CC) technologies. We also discuss possible short- and long-term roles for RCC in the transition to a renewable energy economy, along with opportunities for support and recent scientific progress in selected areas of the world.
{"title":"Opportunities for the renewable energy transition via reactive carbon capture","authors":"Eleanor Kearns, Rachel E. Siegel, Deanna M. D’Alessandro, Ji-Woong Lee, Louise A. Berben","doi":"10.1039/d4cs00741g","DOIUrl":"https://doi.org/10.1039/d4cs00741g","url":null,"abstract":"In this viewpoint article, we give a brief overview definition of reactive carbon capture (RCC) and its relationship to traditional carbon capture (CC) technologies. We also discuss possible short- and long-term roles for RCC in the transition to a renewable energy economy, along with opportunities for support and recent scientific progress in selected areas of the world.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"25 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143797673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mehrdad Asgari, Pablo Albacete, Dhruv Menon, Yuexi Lyu, Xu Chen, David Fairen-Jimenez
Reticular synthesis constructs crystalline architectures by linking molecular building blocks with robust bonds. This process gave rise to reticular chemistry and permanently porous solids. Such precise control over pore shape, size and surface chemistry makes reticular materials versatile for gas storage, separation, catalysis, sensing, and healthcare applications. Despite their potential, the transition from laboratory to industrial applications remains largely limited. Among various factors contributing to this translational gap, the challenges associated with their formulation through structuring and densification for industrial compatibility are significant yet underexplored areas. Here, we focus on the shaping strategies for porous reticular materials, particularly metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), to facilitate their industrial application. We explore techniques that preserve functionality and ensure durability under rigorous industrial conditions. The discussion highlights various configurations – granules, monoliths, pellets, thin films, gels, foams, and glasses – structured to maintain the materials’ intrinsic microscopic properties at a macroscopic level. We examine the foundational theory and principles behind these shapes and structures, employing both in situ and post-synthetic methods. Through case studies, we demonstrate the performance of these materials in real-world settings, offering a structuring blueprint to inform the selection of techniques and shapes for diverse applications. Ultimately, we argue that advancing structuring strategies for porous reticular materials is key to closing the gap between laboratory research and industrial utilization.
{"title":"The structuring of porous reticular materials for energy applications at industrial scales","authors":"Mehrdad Asgari, Pablo Albacete, Dhruv Menon, Yuexi Lyu, Xu Chen, David Fairen-Jimenez","doi":"10.1039/d5cs00166h","DOIUrl":"https://doi.org/10.1039/d5cs00166h","url":null,"abstract":"Reticular synthesis constructs crystalline architectures by linking molecular building blocks with robust bonds. This process gave rise to reticular chemistry and permanently porous solids. Such precise control over pore shape, size and surface chemistry makes reticular materials versatile for gas storage, separation, catalysis, sensing, and healthcare applications. Despite their potential, the transition from laboratory to industrial applications remains largely limited. Among various factors contributing to this translational gap, the challenges associated with their formulation through structuring and densification for industrial compatibility are significant yet underexplored areas. Here, we focus on the shaping strategies for porous reticular materials, particularly metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), to facilitate their industrial application. We explore techniques that preserve functionality and ensure durability under rigorous industrial conditions. The discussion highlights various configurations – granules, monoliths, pellets, thin films, gels, foams, and glasses – structured to maintain the materials’ intrinsic microscopic properties at a macroscopic level. We examine the foundational theory and principles behind these shapes and structures, employing both <em>in situ</em> and post-synthetic methods. Through case studies, we demonstrate the performance of these materials in real-world settings, offering a structuring blueprint to inform the selection of techniques and shapes for diverse applications. Ultimately, we argue that advancing structuring strategies for porous reticular materials is key to closing the gap between laboratory research and industrial utilization.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"11 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143797672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dynamic changes of metal species always occur during catalysis, and primarily rely on forming mobile metal species initiated by thermal or chemical conditions. During these processes, a support is important in affecting the catalyst stability and dynamic change pathways. Among several supports, zeolites provide ideal features for regulating the migration of metal species due to their unique pore structures and specific defect sites. This review provides a comprehensive summary of typical cases about dynamic migration of metal species on/in metal-zeolite catalysts, analyzing the mechanisms and driving factors of metal migration under different reaction conditions. We discuss the roles of zeolite supports in the migration process of metal species, particularly their crucial contributions to the stability of metal species and the optimization of active sites. In addition, the potential mechanism of the dynamic migration of metal species, theoretical studies, and practical guidance for designing highly efficient catalysts are also included in this review.
{"title":"Dynamic evolution of metal structures on/in zeolites for catalysis.","authors":"Yuexin Wu, Pengcheng Deng, Lujie Liu, Junyi Zhang, Haisheng Liu, Xionghou Gao, Feng-Shou Xiao, Liang Wang","doi":"10.1039/d5cs00035a","DOIUrl":"https://doi.org/10.1039/d5cs00035a","url":null,"abstract":"<p><p>Dynamic changes of metal species always occur during catalysis, and primarily rely on forming mobile metal species initiated by thermal or chemical conditions. During these processes, a support is important in affecting the catalyst stability and dynamic change pathways. Among several supports, zeolites provide ideal features for regulating the migration of metal species due to their unique pore structures and specific defect sites. This review provides a comprehensive summary of typical cases about dynamic migration of metal species on/in metal-zeolite catalysts, analyzing the mechanisms and driving factors of metal migration under different reaction conditions. We discuss the roles of zeolite supports in the migration process of metal species, particularly their crucial contributions to the stability of metal species and the optimization of active sites. In addition, the potential mechanism of the dynamic migration of metal species, theoretical studies, and practical guidance for designing highly efficient catalysts are also included in this review.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143794218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A graphical abstract is available for this content
{"title":"Contributors to the 2024 Emerging Investigators collection","authors":"","doi":"10.1039/d5cs90030a","DOIUrl":"https://doi.org/10.1039/d5cs90030a","url":null,"abstract":"A graphical abstract is available for this content","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"18 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143767005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S-scheme heterojunctions have become a hot topic in photocatalysis. Copper (Cu) compounds are a versatile family of photocatalytic materials, including oxides (CuO, Cu2O), binary oxides (CuBi2O4, CuFe2O4), sulfides (CuxS, (1 ≤ x ≤ 2)), selenides (CuSe), phosphides (Cu3P), metal organic frameworks (MOFs), etc. These materials are characterized by narrow bandgaps, large absorption coefficients, and suitable band positions. To further increase the efficiency of photoinduced charge separation, Cu-based photocatalytic materials are widely integrated into S-scheme heterojunctions and exploited for the hydrogen evolution reaction (HER), CO2 reduction, H2O2 generation, N2 fixation, and pollutant degradation. This review comprehensively discusses recent progress in Cu-based S-scheme heterojunctions, and highlights their considerable potential for targeted applications in sustainable energy conversion, environmental remediation, and beyond. The fundamentals of S-scheme charge transfer, the design principles and verification tools are summarized. Then, the review describes the Cu-based photocatalytic materials, categorized according to their chemical composition, and their integration in S-scheme heterojunctions for photocatalytic applications. In particular, the implications of the S-scheme charge transfer mechanism on promoting the catalytic activity of selected systems are analyzed. Finally, current limitations and outlooks are provided to motivate future studies on developing novel and advanced Cu-based S-scheme photocatalysts with high performance and studying the underlying photocatalytic mechanisms.
{"title":"Cu-based S-scheme photocatalysts","authors":"Mahmoud Sayed, Kezhen Qi, Xinhe Wu, Liuyang Zhang, Hermenegildo García, Jiaguo Yu","doi":"10.1039/d4cs01091d","DOIUrl":"https://doi.org/10.1039/d4cs01091d","url":null,"abstract":"S-scheme heterojunctions have become a hot topic in photocatalysis. Copper (Cu) compounds are a versatile family of photocatalytic materials, including oxides (CuO, Cu<small><sub>2</sub></small>O), binary oxides (CuBi<small><sub>2</sub></small>O<small><sub>4</sub></small>, CuFe<small><sub>2</sub></small>O<small><sub>4</sub></small>), sulfides (Cu<small><sub><em>x</em></sub></small>S, (1 ≤ <em>x</em> ≤ 2)), selenides (CuSe), phosphides (Cu<small><sub>3</sub></small>P), metal organic frameworks (MOFs), <em>etc.</em> These materials are characterized by narrow bandgaps, large absorption coefficients, and suitable band positions. To further increase the efficiency of photoinduced charge separation, Cu-based photocatalytic materials are widely integrated into S-scheme heterojunctions and exploited for the hydrogen evolution reaction (HER), CO<small><sub>2</sub></small> reduction, H<small><sub>2</sub></small>O<small><sub>2</sub></small> generation, N<small><sub>2</sub></small> fixation, and pollutant degradation. This review comprehensively discusses recent progress in Cu-based S-scheme heterojunctions, and highlights their considerable potential for targeted applications in sustainable energy conversion, environmental remediation, and beyond. The fundamentals of S-scheme charge transfer, the design principles and verification tools are summarized. Then, the review describes the Cu-based photocatalytic materials, categorized according to their chemical composition, and their integration in S-scheme heterojunctions for photocatalytic applications. In particular, the implications of the S-scheme charge transfer mechanism on promoting the catalytic activity of selected systems are analyzed. Finally, current limitations and outlooks are provided to motivate future studies on developing novel and advanced Cu-based S-scheme photocatalysts with high performance and studying the underlying photocatalytic mechanisms.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"38 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143758561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alkali metals have been recognized as effective promoters in heterogeneous catalysis, capable of enhancing catalytic activity and tuning product distributions. Over the past few decades, significant efforts have been made aiming to reveal the mechanisms underlying the promoting effect of alkalis. However, the roles that alkali metals play in the catalytic process remain elusive due to challenges in capturing their catalytic behaviours upon exposure to reactive environments. This review summarizes recent surface science and theoretical studies of alkali (potassium, cesium)-decorated metal and metal oxide model catalysts, revealing the crucial tuning by alkalis of activity and selectivity for CO2 hydrogenation. The analysis of electronic structures identifies the selective binding mechanism of the positively charged alkali ions on the surface, being able to reduce the surface work function and lead to strong electron polarization on the surfaces. Depending on the alkali–support interaction, the deposition of alkalis can selectively modify the bindings of reaction intermediates involved in CO2 hydrogenation via the interplay among the ionic, covalent and electrostatic tunings. As a result, CO2 can be effectively activated and converted into diverse products at the alkali–support interface, ranging from formic acid to methanol and ethanol. The identified selective bond-tuning advances the application of alkalis in promoting catalytic activity and controlling catalytic selectivity at alkali–support interfaces.
{"title":"Alkali-induced catalytic tuning at metal and metal oxide interfaces","authors":"Wenjie Liao, An Nguyen, Ping Liu","doi":"10.1039/d4cs01094a","DOIUrl":"https://doi.org/10.1039/d4cs01094a","url":null,"abstract":"Alkali metals have been recognized as effective promoters in heterogeneous catalysis, capable of enhancing catalytic activity and tuning product distributions. Over the past few decades, significant efforts have been made aiming to reveal the mechanisms underlying the promoting effect of alkalis. However, the roles that alkali metals play in the catalytic process remain elusive due to challenges in capturing their catalytic behaviours upon exposure to reactive environments. This review summarizes recent surface science and theoretical studies of alkali (potassium, cesium)-decorated metal and metal oxide model catalysts, revealing the crucial tuning by alkalis of activity and selectivity for CO<small><sub>2</sub></small> hydrogenation. The analysis of electronic structures identifies the selective binding mechanism of the positively charged alkali ions on the surface, being able to reduce the surface work function and lead to strong electron polarization on the surfaces. Depending on the alkali–support interaction, the deposition of alkalis can selectively modify the bindings of reaction intermediates involved in CO<small><sub>2</sub></small> hydrogenation <em>via</em> the interplay among the ionic, covalent and electrostatic tunings. As a result, CO<small><sub>2</sub></small> can be effectively activated and converted into diverse products at the alkali–support interface, ranging from formic acid to methanol and ethanol. The identified selective bond-tuning advances the application of alkalis in promoting catalytic activity and controlling catalytic selectivity at alkali–support interfaces.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"15 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metastable materials are considered promising electrocatalysts for clean energy conversions by virtue of their structural flexibility and tunable electronic properties. However, the exploration and synthesis of metastable electrocatalysts via traditional equilibrium methods face challenges because of the requirements of high energy and precise structural control. In this regard, the rapid synthesis method (RSM), with high energy efficiency and ultra-fast heating/cooling rates, enables the production of metastable materials under non-equilibrium conditions. However, the relationship between RSM and the properties of metastable electrocatalysts remains largely unexplored. In this review, we systematically examine the unique benefits of various RSM techniques and the mechanisms governing the formation of metastable materials. Based on these insights, we establish a framework, linking RSM with the electrocatalytic performance of metastable materials. Finally, we outline the future directions of this emerging field and highlight the importance of high-throughput approaches for the autonomous screening and synthesis of optimal electrocatalysts. This review aims to provide an in-depth understanding of metastable electrocatalysts, opening up new avenues for both fundamental research and practical applications in electrocatalysis.
{"title":"Rapid synthesis of metastable materials for electrocatalysis","authors":"Qiao Chen, Zichao Xi, Ziyuan Xu, Minghui Ning, Huimin Yu, Yuanmiao Sun, Da-Wei Wang, Ali Sami Alnaser, Huanyu Jin, Hui-Ming Cheng","doi":"10.1039/d5cs00090d","DOIUrl":"https://doi.org/10.1039/d5cs00090d","url":null,"abstract":"Metastable materials are considered promising electrocatalysts for clean energy conversions by virtue of their structural flexibility and tunable electronic properties. However, the exploration and synthesis of metastable electrocatalysts <em>via</em> traditional equilibrium methods face challenges because of the requirements of high energy and precise structural control. In this regard, the rapid synthesis method (RSM), with high energy efficiency and ultra-fast heating/cooling rates, enables the production of metastable materials under non-equilibrium conditions. However, the relationship between RSM and the properties of metastable electrocatalysts remains largely unexplored. In this review, we systematically examine the unique benefits of various RSM techniques and the mechanisms governing the formation of metastable materials. Based on these insights, we establish a framework, linking RSM with the electrocatalytic performance of metastable materials. Finally, we outline the future directions of this emerging field and highlight the importance of high-throughput approaches for the autonomous screening and synthesis of optimal electrocatalysts. This review aims to provide an in-depth understanding of metastable electrocatalysts, opening up new avenues for both fundamental research and practical applications in electrocatalysis.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"88 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renowned for their high theoretical energy density and cost-effectiveness, metal–sulfur (M–S) batteries are pivotal in overcoming the current energy storage bottlenecks and accelerating the transition toward a cleaner society. Polysulfides (PSs) serve as essential intermediates in M–S batteries and bridge the electrochemical redox processes of sulfur, playing a decisive role in controlling the electrode behaviors and regulating the battery performances. Understanding PS chemistry across diverse battery environments is key to advancing M–S batteries. This review aims to provide a comprehensive overview of the PS chemistry in high-energy-density battery systems and outline future research directions. The compositions, properties, and characterization methods of PSs are introduced to facilitate a fundamental understanding of the PS chemistry in working batteries. Following this, a thorough examination of the chemical and electrochemical behaviors of PSs and their impacts on electrode performances is conducted to deepen the insights into the PS reactions in batteries. Building on this foundation, representative PS regulation strategies are discussed, focusing on molecular modification, solvation optimization, and interfacial regulation, to achieve superior M–S battery performances. Challenges of PSs in practical M–S batteries are finally analyzed, and perspectives on the future research trends of PS chemistry are presented.
{"title":"Polysulfide chemistry in metal–sulfur batteries","authors":"Xi-Yao Li, Meng Zhao, Yun-Wei Song, Chen-Xi Bi, Zheng Li, Zi-Xian Chen, Xue-Qiang Zhang, Bo-Quan Li, Jia-Qi Huang","doi":"10.1039/d4cs00318g","DOIUrl":"https://doi.org/10.1039/d4cs00318g","url":null,"abstract":"Renowned for their high theoretical energy density and cost-effectiveness, metal–sulfur (M–S) batteries are pivotal in overcoming the current energy storage bottlenecks and accelerating the transition toward a cleaner society. Polysulfides (PSs) serve as essential intermediates in M–S batteries and bridge the electrochemical redox processes of sulfur, playing a decisive role in controlling the electrode behaviors and regulating the battery performances. Understanding PS chemistry across diverse battery environments is key to advancing M–S batteries. This review aims to provide a comprehensive overview of the PS chemistry in high-energy-density battery systems and outline future research directions. The compositions, properties, and characterization methods of PSs are introduced to facilitate a fundamental understanding of the PS chemistry in working batteries. Following this, a thorough examination of the chemical and electrochemical behaviors of PSs and their impacts on electrode performances is conducted to deepen the insights into the PS reactions in batteries. Building on this foundation, representative PS regulation strategies are discussed, focusing on molecular modification, solvation optimization, and interfacial regulation, to achieve superior M–S battery performances. Challenges of PSs in practical M–S batteries are finally analyzed, and perspectives on the future research trends of PS chemistry are presented.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"16 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The emerging flexible iontronic sensing (FITS) technology has introduced a novel modality for tactile perception, mimicking the topological structure of human skin while providing a viable strategy for seamless integration with biological systems. With research progress, FITS has evolved from focusing on performance optimization and structural enhancement to a new phase of integration and intelligence, positioning it as a promising candidate for next-generation wearable devices. Therefore, a review from the perspective of technological development trends is essential to fully understand the current state and future potential of FITS devices. In this review, we examine the latest advancements in FITS. We begin by examining the sensing mechanisms of FITS, summarizing research progress in material selection, structural design, and the fabrication of active and electrode layers, while also analysing the challenges and bottlenecks faced by different segments in this field. Next, integrated systems based on FITS devices are reviewed, highlighting their applications in human–machine interaction, healthcare, and environmental monitoring. Additionally, the integration of artificial intelligence into FITS is explored, focusing on optimizing front-end device design and improving the processing and utilization of back-end data. Finally, building on existing research, future challenges for FITS devices are identified and potential solutions are proposed.
{"title":"Flexible iontronic sensing","authors":"Yang Li, Ningning Bai, Yu Chang, Zhiguang Liu, Jianwen Liu, Xiaoqin Li, Wenhao Yang, Hongsen Niu, Weidong Wang, Liu Wang, Wenhao Zhu, Di Chen, Tingrui Pan, Chuan Fei Guo, Guozhen Shen","doi":"10.1039/d4cs00870g","DOIUrl":"https://doi.org/10.1039/d4cs00870g","url":null,"abstract":"The emerging flexible iontronic sensing (FITS) technology has introduced a novel modality for tactile perception, mimicking the topological structure of human skin while providing a viable strategy for seamless integration with biological systems. With research progress, FITS has evolved from focusing on performance optimization and structural enhancement to a new phase of integration and intelligence, positioning it as a promising candidate for next-generation wearable devices. Therefore, a review from the perspective of technological development trends is essential to fully understand the current state and future potential of FITS devices. In this review, we examine the latest advancements in FITS. We begin by examining the sensing mechanisms of FITS, summarizing research progress in material selection, structural design, and the fabrication of active and electrode layers, while also analysing the challenges and bottlenecks faced by different segments in this field. Next, integrated systems based on FITS devices are reviewed, highlighting their applications in human–machine interaction, healthcare, and environmental monitoring. Additionally, the integration of artificial intelligence into FITS is explored, focusing on optimizing front-end device design and improving the processing and utilization of back-end data. Finally, building on existing research, future challenges for FITS devices are identified and potential solutions are proposed.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"39 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Research on aqueous zinc-ion batteries (AZIBs) has expanded significantly over the last decade due to their promising performance, cost, and safety as well as environmentally friendly features. The use of aqueous electrolytes enables promising AZIB properties while simultaneously introducing undesired reactions and processes. This review focuses on fundamental and critical considerations of water-related equilibria and reactions in zinc-ion batteries. First, we examine Zn2+/water ionic equilibria and their consequences for the chemistry of electrodes. Then, we focus on the mechanisms and kinetics of proton and Zn2+ insertion in host frameworks. Next, special attention is given to the water-related dissolution, deposition, and amorphization phenomena of transition-metal-based cathode materials. Finally, we highlight the role of water- and proton-assisted reactions through a systematic comparison of aqueous and nonaqueous zinc-ion batteries.
{"title":"Gains and losses in zinc-ion batteries by proton- and water-assisted reactions","authors":"Yauhen Aniskevich, Seung-Taek Myung","doi":"10.1039/d4cs00810c","DOIUrl":"https://doi.org/10.1039/d4cs00810c","url":null,"abstract":"Research on aqueous zinc-ion batteries (AZIBs) has expanded significantly over the last decade due to their promising performance, cost, and safety as well as environmentally friendly features. The use of aqueous electrolytes enables promising AZIB properties while simultaneously introducing undesired reactions and processes. This review focuses on fundamental and critical considerations of water-related equilibria and reactions in zinc-ion batteries. First, we examine Zn<small><sup>2+</sup></small>/water ionic equilibria and their consequences for the chemistry of electrodes. Then, we focus on the mechanisms and kinetics of proton and Zn<small><sup>2+</sup></small> insertion in host frameworks. Next, special attention is given to the water-related dissolution, deposition, and amorphization phenomena of transition-metal-based cathode materials. Finally, we highlight the role of water- and proton-assisted reactions through a systematic comparison of aqueous and nonaqueous zinc-ion batteries.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"289 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143736662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}