Mechanical azimuthal beam-steering Fabry–Perot resonator antenna with large deflection angle

IF 1.1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Microwaves Antennas & Propagation Pub Date : 2024-03-12 DOI:10.1049/mia2.12471
Yufeng Liu, Lele Zhu, Wenmei Zhang, Wensong Wang
{"title":"Mechanical azimuthal beam-steering Fabry–Perot resonator antenna with large deflection angle","authors":"Yufeng Liu,&nbsp;Lele Zhu,&nbsp;Wenmei Zhang,&nbsp;Wensong Wang","doi":"10.1049/mia2.12471","DOIUrl":null,"url":null,"abstract":"<p>Continuous beam steering approach with minimal power consumption is highly desirable in modern antenna designs. A simple mechanical method for achieving beam steering in the Fabry–Perot resonator antenna (FPRA) is presented. It involves rotating the upper phase gradient metasurface (PGM) mechanically to change the aperture phase distribution, so the beam is continuously steered in the azimuthal plane while maintaining a large elevation angle. The proposed PGM unit cell comprises a hexagonal ring and patch printed on both sides of the substrate, along with a honeycomb lattice. A prototype antenna operating at 5.65 GHz is fabricated and measured to validate the feasibility. Measurement results show that the FPRA achieves a gain of 14.9 dBi, and can continuously steer its beam in the azimuthal plane with an elevation angle of around <i>θ</i> = 50°. Measured radiation patterns in eight azimuthal directions (<i>φ</i> = 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°) are consistent with the simulated results. Compared with other electrical tuning methods, our design has a compact size and requires lower power for the PGM rotation.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"18 6","pages":"413-421"},"PeriodicalIF":1.1000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12471","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12471","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous beam steering approach with minimal power consumption is highly desirable in modern antenna designs. A simple mechanical method for achieving beam steering in the Fabry–Perot resonator antenna (FPRA) is presented. It involves rotating the upper phase gradient metasurface (PGM) mechanically to change the aperture phase distribution, so the beam is continuously steered in the azimuthal plane while maintaining a large elevation angle. The proposed PGM unit cell comprises a hexagonal ring and patch printed on both sides of the substrate, along with a honeycomb lattice. A prototype antenna operating at 5.65 GHz is fabricated and measured to validate the feasibility. Measurement results show that the FPRA achieves a gain of 14.9 dBi, and can continuously steer its beam in the azimuthal plane with an elevation angle of around θ = 50°. Measured radiation patterns in eight azimuthal directions (φ = 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°) are consistent with the simulated results. Compared with other electrical tuning methods, our design has a compact size and requires lower power for the PGM rotation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有大偏转角的机械方位角波束转向法布里-珀罗谐振器天线
在现代天线设计中,采用功耗最小的连续波束转向方法是非常理想的。本文介绍了一种在法布里-珀罗谐振器天线(FPRA)中实现波束转向的简单机械方法。该方法通过机械方式旋转上部相位梯度元面(PGM)来改变孔径相位分布,从而在保持较大仰角的同时,在方位面上对波束进行连续转向。拟议的 PGM 单元由一个六角环和印制在基板两侧的贴片以及一个蜂窝状晶格组成。为了验证其可行性,我们制作并测量了工作频率为 5.65 GHz 的原型天线。测量结果表明,FPRA 实现了 14.9 dBi 的增益,并能在仰角为 θ = 50° 左右的方位面上连续转向波束。八个方位角方向(φ = 0°、45°、90°、135°、180°、225°、270°和 315°)的测量辐射模式与模拟结果一致。与其他电子调谐方法相比,我们的设计体积小巧,PGM 旋转所需的功率较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Microwaves Antennas & Propagation
Iet Microwaves Antennas & Propagation 工程技术-电信学
CiteScore
4.30
自引率
5.90%
发文量
109
审稿时长
7 months
期刊介绍: Topics include, but are not limited to: Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques. Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas. Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms. Radiowave propagation at all frequencies and environments. Current Special Issue. Call for papers: Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf
期刊最新文献
Miniaturised ultra-wideband circular polarised koch fractal crossed dipole array Phase-only transmit beampattern synthesis with sparse arrays via alternating optimisation-alternating direction of the multipliers method Breakthrough design of power handling capability-enhanced slotted oversized substrate-integrated waveguide power divider/combiner considering corona and thermal effects Synthesis of sparse rectangular planar arrays with weight function and improved grey wolf optimization algorithm A compact half-mode substrate integrated waveguide bandpass filter based on highly confined slow waves with loading capacitive patches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1