Adaptive Gain Scheduling using Reinforcement Learning for Quadcopter Control

Mike Timmerman, Aryan Patel, Tim Reinhart
{"title":"Adaptive Gain Scheduling using Reinforcement Learning for Quadcopter Control","authors":"Mike Timmerman, Aryan Patel, Tim Reinhart","doi":"arxiv-2403.07216","DOIUrl":null,"url":null,"abstract":"The paper presents a technique using reinforcement learning (RL) to adapt the\ncontrol gains of a quadcopter controller. Specifically, we employed Proximal\nPolicy Optimization (PPO) to train a policy which adapts the gains of a\ncascaded feedback controller in-flight. The primary goal of this controller is\nto minimize tracking error while following a specified trajectory. The paper's\nkey objective is to analyze the effectiveness of the adaptive gain policy and\ncompare it to the performance of a static gain control algorithm, where the\nIntegral Squared Error and Integral Time Squared Error are used as metrics. The\nresults show that the adaptive gain scheme achieves over 40$\\%$ decrease in\ntracking error as compared to the static gain controller.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.07216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a technique using reinforcement learning (RL) to adapt the control gains of a quadcopter controller. Specifically, we employed Proximal Policy Optimization (PPO) to train a policy which adapts the gains of a cascaded feedback controller in-flight. The primary goal of this controller is to minimize tracking error while following a specified trajectory. The paper's key objective is to analyze the effectiveness of the adaptive gain policy and compare it to the performance of a static gain control algorithm, where the Integral Squared Error and Integral Time Squared Error are used as metrics. The results show that the adaptive gain scheme achieves over 40$\%$ decrease in tracking error as compared to the static gain controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用强化学习进行四旋翼飞行器控制的自适应增益调度
本文介绍了一种利用强化学习(RL)调整四旋翼飞行器控制器增益的技术。具体来说,我们采用了 "近端策略优化"(ProximalPolicy Optimization,PPO)来训练一种策略,以调整飞行中级联反馈控制器的增益。该控制器的主要目标是在遵循指定轨迹的同时使跟踪误差最小化。本文的主要目的是分析自适应增益策略的有效性,并将其与静态增益控制算法的性能进行比较。结果表明,与静态增益控制器相比,自适应增益方案的跟踪误差降低了 40% 以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human-Variability-Respecting Optimal Control for Physical Human-Machine Interaction A Valuation Framework for Customers Impacted by Extreme Temperature-Related Outages On the constrained feedback linearization control based on the MILP representation of a ReLU-ANN Motion Planning under Uncertainty: Integrating Learning-Based Multi-Modal Predictors into Branch Model Predictive Control Managing Renewable Energy Resources Using Equity-Market Risk Tools - the Efficient Frontiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1