Anticancer Properties of Different Varieties of Date Palm (Phoenix dactylifera L.) Leaf Extracts in Human Tumor Cells: a Comparative Study.

IF 3.1 2区 农林科学 Q2 CHEMISTRY, APPLIED Plant Foods for Human Nutrition Pub Date : 2024-06-01 Epub Date: 2024-03-13 DOI:10.1007/s11130-024-01162-1
Mouna Chakroun, Maram Morjen, Hazem Ben Mabrouk, Hafedh Mejdoub, Najet Srairi-Abid, Naziha Marrakchi, Jed Jebali, Bassem Khemakhem
{"title":"Anticancer Properties of Different Varieties of Date Palm (Phoenix dactylifera L.) Leaf Extracts in Human Tumor Cells: a Comparative Study.","authors":"Mouna Chakroun, Maram Morjen, Hazem Ben Mabrouk, Hafedh Mejdoub, Najet Srairi-Abid, Naziha Marrakchi, Jed Jebali, Bassem Khemakhem","doi":"10.1007/s11130-024-01162-1","DOIUrl":null,"url":null,"abstract":"<p><p>Plant polyphenols are nutraceutical components with relevant biological effects on human health. They act against development of several diseases including cancer. In this study, the methanolic extracts of four date palm Phoenix dactylifera leaves (Deglet Noor (DN), Barhee (B), Khalas (KS) and Khunezi (KZ)) collected from south Tunisia were preliminary analyzed for their effects against U87 (human glioblastoma) and MDA-MB-231 (human breast cancer) cell line development. Results showed that Barhee extract (30 μg/mL) was the most efficient to reduce the growth of both tumor cells to about 40% (p < 0.05) without inducing cytotoxicity. Significantly, KS, KZ, DN and B extracts (30 μg/mL) decreased MDA-MB-231 and U87 cell adhesion towards fibrinogen and fibronectin. Using integrin blocking antibodies, leaf extracts competitively decreased human glioblastoma cell attachment to immobilized antibodies by interfering to αvβ3 and α5β1 integrin receptors. At the same concentration, extracts decreased MDA-MB-23 and U87 cell migration performed with wound healing assay. Particularly, Barhee and Deglet Noor leaf extracts (30 μg/mL) significantly reduced U87 cell invasion by 52.92% (p < 0.01) and 74.56% (p < 0.01), respectively. Collegially, our findings revealed beneficial proprieties of four varieties of date palm leaf especially those displayed by DN and B extracts that may serve as active candidates against human glioblastoma and breast cancer progression.</p>","PeriodicalId":20092,"journal":{"name":"Plant Foods for Human Nutrition","volume":" ","pages":"518-525"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Foods for Human Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11130-024-01162-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Plant polyphenols are nutraceutical components with relevant biological effects on human health. They act against development of several diseases including cancer. In this study, the methanolic extracts of four date palm Phoenix dactylifera leaves (Deglet Noor (DN), Barhee (B), Khalas (KS) and Khunezi (KZ)) collected from south Tunisia were preliminary analyzed for their effects against U87 (human glioblastoma) and MDA-MB-231 (human breast cancer) cell line development. Results showed that Barhee extract (30 μg/mL) was the most efficient to reduce the growth of both tumor cells to about 40% (p < 0.05) without inducing cytotoxicity. Significantly, KS, KZ, DN and B extracts (30 μg/mL) decreased MDA-MB-231 and U87 cell adhesion towards fibrinogen and fibronectin. Using integrin blocking antibodies, leaf extracts competitively decreased human glioblastoma cell attachment to immobilized antibodies by interfering to αvβ3 and α5β1 integrin receptors. At the same concentration, extracts decreased MDA-MB-23 and U87 cell migration performed with wound healing assay. Particularly, Barhee and Deglet Noor leaf extracts (30 μg/mL) significantly reduced U87 cell invasion by 52.92% (p < 0.01) and 74.56% (p < 0.01), respectively. Collegially, our findings revealed beneficial proprieties of four varieties of date palm leaf especially those displayed by DN and B extracts that may serve as active candidates against human glioblastoma and breast cancer progression.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同品种枣椰树(Phoenix dactylifera L.)叶提取物在人类肿瘤细胞中的抗癌特性:一项比较研究。
植物多酚是一种营养保健成分,对人体健康具有相关的生物学效应。它们对包括癌症在内的多种疾病的发展具有抑制作用。本研究初步分析了从突尼斯南部采集的四种枣椰树叶(Deglet Noor (DN)、Barhee (B)、Khalas (KS)和 Khunezi (KZ))的甲醇提取物对 U87(人类胶质母细胞瘤)和 MDA-MB-231(人类乳腺癌)细胞系发育的影响。结果表明,Barhee 提取物(30 μg/mL)最有效地将两种肿瘤细胞的生长率降低了约 40% (p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Foods for Human Nutrition
Plant Foods for Human Nutrition 工程技术-食品科技
CiteScore
6.80
自引率
7.50%
发文量
89
审稿时长
12-24 weeks
期刊介绍: Plant Foods for Human Nutrition (previously Qualitas Plantarum) is an international journal that publishes reports of original research and critical reviews concerned with the improvement and evaluation of the nutritional quality of plant foods for humans, as they are influenced by: - Biotechnology (all fields, including molecular biology and genetic engineering) - Food science and technology - Functional, nutraceutical or pharma foods - Other nutrients and non-nutrients inherent in plant foods
期刊最新文献
Aronia Melanocarpa Elliot Anthocyanins Inhibits Alcoholic Liver Disease by Activation of α7nAChR. Isolation of an α-glucosidase Inhibitor from Houttuynia cordata Thunb. and Its In vitro and In vivo Hypoglycemic Bioactivity. Anti-ulcerogenic Potential of Kalanchoë gastonis-bonnieri Extracts in Male ICR Mice Model of Ethanol-induced Gastric Ulcers. Protein-based Emulsion Hydrogels and Their Application in the Development of Sustainable Food Products. Characterization and Techno-Functional Properties of High Protein Walnut Flour from an Oil by-Product.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1