H3K4 methylation regulates development, DNA repair, and virulence in Mucorales.

IF 5.2 1区 生物学 Q1 MYCOLOGY Ima Fungus Pub Date : 2024-03-14 DOI:10.1186/s43008-023-00136-3
Macario Osorio-Concepción, Carlos Lax, Damaris Lorenzo-Gutiérrez, José Tomás Cánovas-Márquez, Ghizlane Tahiri, Eusebio Navarro, Ulrike Binder, Francisco Esteban Nicolás, Victoriano Garre
{"title":"H3K4 methylation regulates development, DNA repair, and virulence in Mucorales.","authors":"Macario Osorio-Concepción, Carlos Lax, Damaris Lorenzo-Gutiérrez, José Tomás Cánovas-Márquez, Ghizlane Tahiri, Eusebio Navarro, Ulrike Binder, Francisco Esteban Nicolás, Victoriano Garre","doi":"10.1186/s43008-023-00136-3","DOIUrl":null,"url":null,"abstract":"<p><p>Mucorales are basal fungi that opportunistically cause a potentially fatal infection known as mucormycosis (black fungus disease), which poses a significant threat to human health due to its high mortality rate and its recent association with SARS-CoV-2 infections. On the other hand, histone methylation is a regulatory mechanism with pleiotropic effects, including the virulence of several pathogenic fungi. However, the role of epigenetic changes at the histone level never has been studied in Mucorales. Here, we dissected the functional role of Set1, a histone methyltransferase that catalyzes the methylation of H3K4, which is associated with the activation of gene transcription and virulence. A comparative analysis of the Mucor lusitanicus genome (previously known as Mucor circinelloides f. lusitanicus) identified only one homolog of Set1 from Candida albicans and Saccharomyces cerevisiae that contains the typical SET domain. Knockout strains in the gene set1 lacked H3K4 monomethylation, dimethylation, and trimethylation enzymatic activities. These strains also showed a significant reduction in vegetative growth and sporulation. Additionally, set1 null strains were more sensitive to SDS, EMS, and UV light, indicating severe impairment in the repair process of the cell wall and DNA lesions and a correlation between Set1 and these processes. During pathogen-host interactions, strains lacking the set1 gene exhibited shortened polar growth within the phagosome and attenuated virulence both in vitro and in vivo. Our findings suggest that the histone methyltransferase Set1 coordinates several cell processes related to the pathogenesis of M. lusitanicus and may be an important target for future therapeutic strategies against mucormycosis.</p>","PeriodicalId":54345,"journal":{"name":"Ima Fungus","volume":"15 1","pages":"6"},"PeriodicalIF":5.2000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938801/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ima Fungus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s43008-023-00136-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mucorales are basal fungi that opportunistically cause a potentially fatal infection known as mucormycosis (black fungus disease), which poses a significant threat to human health due to its high mortality rate and its recent association with SARS-CoV-2 infections. On the other hand, histone methylation is a regulatory mechanism with pleiotropic effects, including the virulence of several pathogenic fungi. However, the role of epigenetic changes at the histone level never has been studied in Mucorales. Here, we dissected the functional role of Set1, a histone methyltransferase that catalyzes the methylation of H3K4, which is associated with the activation of gene transcription and virulence. A comparative analysis of the Mucor lusitanicus genome (previously known as Mucor circinelloides f. lusitanicus) identified only one homolog of Set1 from Candida albicans and Saccharomyces cerevisiae that contains the typical SET domain. Knockout strains in the gene set1 lacked H3K4 monomethylation, dimethylation, and trimethylation enzymatic activities. These strains also showed a significant reduction in vegetative growth and sporulation. Additionally, set1 null strains were more sensitive to SDS, EMS, and UV light, indicating severe impairment in the repair process of the cell wall and DNA lesions and a correlation between Set1 and these processes. During pathogen-host interactions, strains lacking the set1 gene exhibited shortened polar growth within the phagosome and attenuated virulence both in vitro and in vivo. Our findings suggest that the histone methyltransferase Set1 coordinates several cell processes related to the pathogenesis of M. lusitanicus and may be an important target for future therapeutic strategies against mucormycosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
H3K4 甲基化调节粘菌的发育、DNA 修复和毒力。
粘菌属是一种基生真菌,可机会性地引起一种潜在的致命感染,即粘孢子菌病(黑木耳病),由于其死亡率高以及最近与 SARS-CoV-2 感染的关联,该病对人类健康构成了重大威胁。另一方面,组蛋白甲基化是一种具有多效应的调控机制,包括几种致病真菌的毒力。然而,组蛋白水平的表观遗传变化在真菌中的作用却从未被研究过。在这里,我们剖析了组蛋白甲基转移酶 Set1 的功能作用,它能催化 H3K4 的甲基化,而 H3K4 与基因转录的激活和毒力有关。对卢氏粘菌(Mucor lusitanicus)基因组(以前称为 Mucor circinelloides f. lusitanicus)的比较分析发现,白色念珠菌和酿酒酵母中只有一种含有典型 SET 结构域的 Set1 同源物。基因 set1 的基因敲除菌株缺乏 H3K4 单甲基化、二甲基化和三甲基化酶活性。这些菌株的无性生长和孢子生成也明显减少。此外,set1 空位菌株对 SDS、EMS 和紫外线更敏感,表明细胞壁和 DNA 损伤的修复过程受到严重破坏,Set1 与这些过程之间存在相关性。在病原体与宿主相互作用过程中,缺乏 Set1 基因的菌株在吞噬体中的极性生长缩短,体外和体内的毒力减弱。我们的研究结果表明,组蛋白甲基转移酶Set1能协调与卢氏粘孢子虫发病机制相关的几个细胞过程,并可能成为未来针对粘孢子虫病治疗策略的一个重要靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ima Fungus
Ima Fungus Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
11.00
自引率
3.70%
发文量
18
审稿时长
20 weeks
期刊介绍: The flagship journal of the International Mycological Association. IMA Fungus is an international, peer-reviewed, open-access, full colour, fast-track journal. Papers on any aspect of mycology are considered, and published on-line with final pagination after proofs have been corrected; they are then effectively published under the International Code of Nomenclature for algae, fungi, and plants. The journal strongly supports good practice policies, and requires voucher specimens or cultures to be deposited in a public collection with an online database, DNA sequences in GenBank, alignments in TreeBASE, and validating information on new scientific names, including typifications, to be lodged in MycoBank. News, meeting reports, personalia, research news, correspondence, book news, and information on forthcoming international meetings are included in each issue
期刊最新文献
New insights on the Xylaria species (Ascomycota, Xylariales) with bright-coloured exudates: Xylaria aurantiorubroguttata sp. nov. and revision of X. haemorrhoidalis and X. anisopleura type collections. XII International Mycological Congress: report of Congress action on nomenclature proposals relating to fungi. The contribution of tropical long-term studies to mycology. A new leaf inhabiting ascomycete from the Jurassic (ca 170 Mya) of Yorkshire, UK, and insights into the appearance and diversification of filamentous Ascomycota. Enhanced detection of Pythium insidiosum via lipid profiling with matrix-assisted laser desorption ionization time of flight mass spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1