Danielle N. Siegel , Safeer F. Siddicky , Wyatt D. Davis , Erin M. Mannen
{"title":"Mechanical environment influences muscle activity during infant rolling","authors":"Danielle N. Siegel , Safeer F. Siddicky , Wyatt D. Davis , Erin M. Mannen","doi":"10.1016/j.humov.2024.103208","DOIUrl":null,"url":null,"abstract":"<div><p>An infant's musculoskeletal and motor development is largely affected by their environment. Understanding how different mechanical environments affect an infant's movements and muscle use is necessary to inform the juvenile products industry and reduce incidents involving inclined nursery products each year. The purpose of this study was to determine how the coordinated movements and corresponding muscle activation patterns are affected by different mechanical environments, specifically the back incline angle. Thirty-eight healthy infants (age: 6.5 ± 0.7 months; 23 M/15 F) were enrolled in this IRB-approved in-vivo biomechanics study. Surface electromyography sensors recorded muscle activity of the erector spinae, abdominal muscles, quadriceps, and hamstrings while infants rolled in five different mechanical environments: a flat surface and four device configurations representing a range of inclines infants are commonly exposed to. Coordinated movements were determined using video. In all configurations featuring an inclined seatback angle, infants experienced significantly higher erector spinae muscle activation and significantly lower abdominal muscle activation compared to the flat surface. Infants also exhibited a different coordinated movement featuring spinal extension and a pelvic thrust in the inclined device configurations that was not previously observed on the flat surface alone. Understanding how infants coordinate their movements and use their muscles during rolling in different inclined environments provides more insight into motor development and may inform the juvenile products industry. Many factors impact an infant's movements, therefore future work should explore how other environmental interactions influence an infant's movements and muscle activation, particularly for rolling.</p></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":"95 ","pages":"Article 103208"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Movement Science","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167945724000319","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
An infant's musculoskeletal and motor development is largely affected by their environment. Understanding how different mechanical environments affect an infant's movements and muscle use is necessary to inform the juvenile products industry and reduce incidents involving inclined nursery products each year. The purpose of this study was to determine how the coordinated movements and corresponding muscle activation patterns are affected by different mechanical environments, specifically the back incline angle. Thirty-eight healthy infants (age: 6.5 ± 0.7 months; 23 M/15 F) were enrolled in this IRB-approved in-vivo biomechanics study. Surface electromyography sensors recorded muscle activity of the erector spinae, abdominal muscles, quadriceps, and hamstrings while infants rolled in five different mechanical environments: a flat surface and four device configurations representing a range of inclines infants are commonly exposed to. Coordinated movements were determined using video. In all configurations featuring an inclined seatback angle, infants experienced significantly higher erector spinae muscle activation and significantly lower abdominal muscle activation compared to the flat surface. Infants also exhibited a different coordinated movement featuring spinal extension and a pelvic thrust in the inclined device configurations that was not previously observed on the flat surface alone. Understanding how infants coordinate their movements and use their muscles during rolling in different inclined environments provides more insight into motor development and may inform the juvenile products industry. Many factors impact an infant's movements, therefore future work should explore how other environmental interactions influence an infant's movements and muscle activation, particularly for rolling.
期刊介绍:
Human Movement Science provides a medium for publishing disciplinary and multidisciplinary studies on human movement. It brings together psychological, biomechanical and neurophysiological research on the control, organization and learning of human movement, including the perceptual support of movement. The overarching goal of the journal is to publish articles that help advance theoretical understanding of the control and organization of human movement, as well as changes therein as a function of development, learning and rehabilitation. The nature of the research reported may vary from fundamental theoretical or empirical studies to more applied studies in the fields of, for example, sport, dance and rehabilitation with the proviso that all studies have a distinct theoretical bearing. Also, reviews and meta-studies advancing the understanding of human movement are welcome.
These aims and scope imply that purely descriptive studies are not acceptable, while methodological articles are only acceptable if the methodology in question opens up new vistas in understanding the control and organization of human movement. The same holds for articles on exercise physiology, which in general are not supported, unless they speak to the control and organization of human movement. In general, it is required that the theoretical message of articles published in Human Movement Science is, to a certain extent, innovative and not dismissible as just "more of the same."