Pub Date : 2024-11-04DOI: 10.1016/j.humov.2024.103301
Vertical ground reaction force (vGRF) is a main kinetic gait analysis explaining body weight loading patterns. The study primarily aimed to understand effects of Freezing of gait (FoG) on vGRF in Parkinson's disease (PD). A secondary analysis for a walking dataset including biomechanical analyses for 26 PD participants (13 with FoG) was performed. Considering the normal pattern of vGRF curve, peaks during early stance (F1) and late stance (F3), and slope in- during mid-stance (F2) were used to represent the change in kinetic forces. vGRF parameters were compared between FoG and non-FoG participants, and at off- and on-medication. FoG participants showed higher vGRFs during mid-stance F2 magnitude (p = 0.003), and weaker vertical propulsion; F3 magnitude (p < 0.001). This coincided with delayed weight acceptance; F1 timing (p = 0.019), and midstance peaks; F2 timing (p = 0.004). At off-medications, the F2 magnitude was significantly higher (p = 0.006), F3 magnitude lower (p = 0.001), and F1 time slower (p = 0.034) in FoG. At on-medication, F3 magnitude was still significantly lower (p = 0.017), and F2 time was slower (p = 0.037) in FoG. This study reveals that FoG significantly affects vGRF, particularly F3 magnitude during the push-off phase. Analyzing vGRF is crucial for understanding and managing FoG, allowing for more targeted interventions to improve FoG outcomes.
{"title":"Effects of freezing of gait on vertical ground reaction force in Parkinson's disease","authors":"","doi":"10.1016/j.humov.2024.103301","DOIUrl":"10.1016/j.humov.2024.103301","url":null,"abstract":"<div><div>Vertical ground reaction force (vGRF) is a main kinetic gait analysis explaining body weight loading patterns. The study primarily aimed to understand effects of Freezing of gait (FoG) on vGRF in Parkinson's disease (PD). A secondary analysis for a walking dataset including biomechanical analyses for 26 PD participants (13 with FoG) was performed. Considering the normal pattern of vGRF curve, peaks during early stance (F1) and late stance (F3), and slope in- during mid-stance (F2) were used to represent the change in kinetic forces. vGRF parameters were compared between FoG and non-FoG participants, and at off- and on-medication. FoG participants showed higher vGRFs during mid-stance F2 magnitude (<em>p</em> = 0.003), and weaker vertical propulsion; F3 magnitude (<em>p</em> < 0.001). This coincided with delayed weight acceptance; F1 timing (<em>p</em> = 0.019), and midstance peaks; F2 timing (<em>p</em> = 0.004). At off-medications, the F2 magnitude was significantly higher (<em>p</em> = 0.006), F3 magnitude lower (<em>p</em> = 0.001), and F1 time slower (<em>p</em> = 0.034) in FoG. At on-medication, F3 magnitude was still significantly lower (<em>p</em> = 0.017), and F2 time was slower (<em>p</em> = 0.037) in FoG. This study reveals that FoG significantly affects vGRF, particularly F3 magnitude during the push-off phase. Analyzing vGRF is crucial for understanding and managing FoG, allowing for more targeted interventions to improve FoG outcomes.</div></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.humov.2024.103300
Background
Recent studies suggest that muscle synergy patterns can be a guide for diagnosis and rehabilitation.
Research question
Does human's lower limb synergy pattern significantly change with changes in walking speed? Are there large differences in synergy patterns among different healthy individuals?
Methods
22 healthy subjects from an open-source datasets were included. Non-negative matrix factorization was applied to identify the module composition of surface electromyography(sEMG) data, and the similarity index was adopted to quantify the overall similarity between synergy patterns.
Results
Results demonstrated that healthy individuals have their own intrinsic muscle recruitment and coordination characteristics for locomotion at various speeds, additionally, their synergy patterns exhibit predictability under speed variations.
Significance
This study develop reference synergy patterns for the lower limbs across 28 different walking speeds. The developed synergy patterns and the above findings may guide the study of gait synergy in rehabilitation and assistance.
{"title":"Synergy in motion: Exploring the similarity and variability of muscle synergy patterns in healthy individuals","authors":"","doi":"10.1016/j.humov.2024.103300","DOIUrl":"10.1016/j.humov.2024.103300","url":null,"abstract":"<div><h3>Background</h3><div>Recent studies suggest that muscle synergy patterns can be a guide for diagnosis and rehabilitation.</div></div><div><h3>Research question</h3><div>Does human's lower limb synergy pattern significantly change with changes in walking speed? Are there large differences in synergy patterns among different healthy individuals?</div></div><div><h3>Methods</h3><div>22 healthy subjects from an open-source datasets were included. Non-negative matrix factorization was applied to identify the module composition of surface electromyography(sEMG) data, and the similarity index was adopted to quantify the overall similarity between synergy patterns.</div></div><div><h3>Results</h3><div>Results demonstrated that healthy individuals have their own intrinsic muscle recruitment and coordination characteristics for locomotion at various speeds, additionally, their synergy patterns exhibit predictability under speed variations.</div></div><div><h3>Significance</h3><div>This study develop reference synergy patterns for the lower limbs across 28 different walking speeds. The developed synergy patterns and the above findings may guide the study of gait synergy in rehabilitation and assistance.</div></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1016/j.humov.2024.103299
Objectives
To investigate the effect of concentric fatigue on proprioception, motor control and performance of the shoulder in healthy young adults.
Design
Test-retest experimental design.
Setting
Human performance laboratory.
Participants
20 healthy adults.
Main outcome meausure(s)
Proprioception was assessed using the joint repositioning sense (JRS) and the threshold to detection of passive movement (TTDPM). Motor control was assessed using the Y-balance Upper Quarter test (YBT-UQ) and performance using the Athletic Shoulder test (ASH test). All tests were conducted before and immediately after fatigue intervention (CON/CON protocol).
Results
Following fatigue, absolute angular error (AAE) was significantly increase by 160.27 %. Moreover, there was a significant increase (48.41 %) in TTDPM after fatigue. Furthermore there was no significant differences in motor control and performance before and after fatigue intervention.
Conclusions
Since muscular fatigue negatively affects shoulder proprioception, it is essential to assess proprioception before and after fatigue to detect any dysfunctions that may arise as a result of fatigue. To address these dysfunctions, it is recommended to engage in proprioceptive exercises under situations of fatigue in order to enhance the sensitivity of the mechanoreceptors.
{"title":"Concentric exercise-induced fatigue of the shoulder impairs proprioception but not motor control or performance in healthy young adults","authors":"","doi":"10.1016/j.humov.2024.103299","DOIUrl":"10.1016/j.humov.2024.103299","url":null,"abstract":"<div><h3>Objectives</h3><div>To investigate the effect of concentric fatigue on proprioception, motor control and performance of the shoulder in healthy young adults.</div></div><div><h3>Design</h3><div>Test-retest experimental design.</div></div><div><h3>Setting</h3><div>Human performance laboratory.</div></div><div><h3>Participants</h3><div>20 healthy adults.</div></div><div><h3>Main outcome meausure(s)</h3><div>Proprioception was assessed using the joint repositioning sense (JRS) and the threshold to detection of passive movement (TTDPM). Motor control was assessed using the Y-balance Upper Quarter test (YBT-UQ) and performance using the Athletic Shoulder test (ASH test). All tests were conducted before and immediately after fatigue intervention (CON/CON protocol).</div></div><div><h3>Results</h3><div>Following fatigue, absolute angular error (AAE) was significantly increase by 160.27 %. Moreover, there was a significant increase (48.41 %) in TTDPM after fatigue. Furthermore there was no significant differences in motor control and performance before and after fatigue intervention.</div></div><div><h3>Conclusions</h3><div>Since muscular fatigue negatively affects shoulder proprioception, it is essential to assess proprioception before and after fatigue to detect any dysfunctions that may arise as a result of fatigue. To address these dysfunctions, it is recommended to engage in proprioceptive exercises under situations of fatigue in order to enhance the sensitivity of the mechanoreceptors.</div></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142513173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1016/j.humov.2024.103298
Objective
An optimal proprioceptive reweighting strategy is necessary to maintain posture. A suboptimal strategy was associated with injury determinants and whether the strategy can be modified is unknown. Muscle fatigue can be used to investigate proprioceptive reweighting. The aims of this study were to evaluate the effects of local fatigue on proprioceptive reweighting strategies and postural stability as well as relationships between fatigue and these postural parameters.
Design
Fourteen recreational athletes were included. Relative proprioceptive weighting (RPW) was characterized according to the perturbation of the center of pressure (CoP) displacement generated by muscle vibration on a firm and foam surface. RPW evolution <95 % indicated that individuals were able to reweight proprioception from the ankle to lumbar signals according to the surface while evolution >105 % indicated that athletes maintained an ankle-steered strategy. Student's t-tests were used to compare RPW evolution, CoP velocity, and root mean square (RMS) before and after exercise-induced hamstring fatigue. Spearman's rank correlation coefficient was used to test the relationship between fatigue variables, RPW evolution, and stability variables.
Results
Hamstring fatigue induced an ankle-steered strategy characterized by an increase in RPW evolution when the surface was changed (P = 0.002) and an increase in CoP velocity (P = 0.045) and CoP RMS (P = 0.005) on firm surface. None of the correlation coefficients testing the relationship between the parameters proved to be significant.
Conclusion
Local fatigue leads to suboptimal proprioceptive reweighting strategies and impaired stability on firm surface. Results suggests that proprioceptive reweighting strategies are modifiable. Whether this predisposes participants to injury remains to be defined.
{"title":"Influence of exercise-induced hamstrings fatigue on proprioceptive reweighting strategies and postural performance in bipedal stance in recreational athletes","authors":"","doi":"10.1016/j.humov.2024.103298","DOIUrl":"10.1016/j.humov.2024.103298","url":null,"abstract":"<div><h3>Objective</h3><div>An optimal proprioceptive reweighting strategy is necessary to maintain posture. A suboptimal strategy was associated with injury determinants and whether the strategy can be modified is unknown. Muscle fatigue can be used to investigate proprioceptive reweighting. The aims of this study were to evaluate the effects of local fatigue on proprioceptive reweighting strategies and postural stability as well as relationships between fatigue and these postural parameters<strong>.</strong></div></div><div><h3>Design</h3><div>Fourteen recreational athletes were included. Relative proprioceptive weighting (RPW) was characterized according to the perturbation of the center of pressure (CoP) displacement generated by muscle vibration on a firm and foam surface. RPW evolution <95 % indicated that individuals were able to reweight proprioception from the ankle to lumbar signals according to the surface while evolution >105 % indicated that athletes maintained an ankle-steered strategy. Student's <em>t</em>-tests were used to compare RPW evolution, CoP velocity, and root mean square (RMS) before and after exercise-induced hamstring fatigue. Spearman's rank correlation coefficient was used to test the relationship between fatigue variables, RPW evolution, and stability variables.</div></div><div><h3>Results</h3><div>Hamstring fatigue induced an ankle-steered strategy characterized by an increase in RPW evolution when the surface was changed (<em>P</em> = 0.002) and an increase in CoP velocity (<em>P</em> = 0.045) and CoP RMS (<em>P</em> = 0.005) on firm surface. None of the correlation coefficients testing the relationship between the parameters proved to be significant.</div></div><div><h3>Conclusion</h3><div>Local fatigue leads to suboptimal proprioceptive reweighting strategies and impaired stability on firm surface. Results suggests that proprioceptive reweighting strategies are modifiable. Whether this predisposes participants to injury remains to be defined.</div></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142513174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.humov.2024.103294
Background
External, environmental perturbations (e.g., slips) account for >60% of falls and lead to severe health-related consequences. Perturbation training paradigms are known to reduce slip-related fall risk by improving two key aspects of reactive balance control: center of mass (COM) stability and limb support. However, perturbation training requires complex technology and is difficult to implement outside of the laboratory. This study examined if key reactive balance mechanisms could also be improved via more clinically translatable balance exercises targeting both volitional and reactive balance control (i.e., domain-specific balance training).
Methods
12 young adults completed a single session of domain-specific balance training and were exposed to a single overground slip (S1-Domain-Specific). The control group (n = 12) was exposed to 24 overground slips (S1–24-Control) without prior training. On the first (novel) slip, we compared reactive balance performance (rate of falls and loss of balance, margin of stability (MOS), limb support) between the training and control groups (S1-Domain-Specific vs. S1-Control). We also compared key reactive balance outcomes between S1-Domain-Specific and the final slip of the control group (S24-Control).
Results
There was a lower rate of backward loss of balance on S1-Domain-Specific than S1-Control, along with higher post-slip MOS and increased hip height (i.e., greater limb support) (p < 0.05). These improvements were associated with a more anterior COM position, greater COM velocity in the anterior direction, and reduced slip distance. Post-slip MOS and hip height were not significantly different between S1-Domain-Specific and S24-Control.
Discussion
A single session of domain-specific balance training improved key components of reactive balance control and could significantly reduce slip-related fall risk. Domain-specific balance training might provide similar fall prevention benefits as perturbation training, with easier transition into clinics, communities, and homes.
背景外部环境干扰(如滑倒)占跌倒的 60%,并导致严重的健康相关后果。众所周知,扰动训练范例可以通过改善反应性平衡控制的两个关键方面(质心(COM)稳定性和肢体支撑)来降低与滑倒相关的跌倒风险。然而,扰动训练需要复杂的技术,很难在实验室外实施。本研究探讨了关键的反应性平衡机制是否也可以通过针对意志性和反应性平衡控制的更具临床可转化性的平衡训练(即特定领域平衡训练)来改善。方法 12 名年轻成人完成了一次特定领域平衡训练,并暴露于一次地面滑倒(S1-特定领域)。对照组(n = 12)在未接受训练的情况下接受 24 次地面滑行(S1-24-对照组)。在第一次(新颖的)滑倒时,我们比较了训练组和对照组(S1-特定领域组与 S1-对照组)的反应平衡能力(跌倒率和失去平衡率、稳定幅度 (MOS)、肢体支撑力)。我们还比较了 S1-特定领域组和对照组(S24-对照组)最后滑倒时的主要反应平衡结果。结果S1-特定领域组的向后失去平衡率低于 S1-对照组,同时滑倒后的 MOS 较高,臀部高度增加(即肢体支撑力增强)(p < 0.05)。这些改善与更靠前的 COM 位置、更大的 COM 前向速度和更小的滑移距离有关。滑倒后的 MOS 和臀部高度在 S1-特定领域和 S24-控制之间没有显著差异。特定领域平衡训练可提供与扰动训练类似的预防跌倒益处,而且更容易过渡到诊所、社区和家庭。
{"title":"Domain-specific balance training reduces slip-related fall risk in young adults: A potential alternative to perturbation training","authors":"","doi":"10.1016/j.humov.2024.103294","DOIUrl":"10.1016/j.humov.2024.103294","url":null,"abstract":"<div><h3>Background</h3><div>External, environmental perturbations (e.g., slips) account for >60% of falls and lead to severe health-related consequences. Perturbation training paradigms are known to reduce slip-related fall risk by improving two key aspects of reactive balance control: center of mass (COM) stability and limb support. However, perturbation training requires complex technology and is difficult to implement outside of the laboratory. This study examined if key reactive balance mechanisms could also be improved via more clinically translatable balance exercises targeting both volitional and reactive balance control (i.e., domain-specific balance training).</div></div><div><h3>Methods</h3><div>12 young adults completed a single session of domain-specific balance training and were exposed to a single overground slip (S1-Domain-Specific). The control group (<em>n</em> = 12) was exposed to 24 overground slips (S1–24-Control) without prior training. On the first (novel) slip, we compared reactive balance performance (rate of falls and loss of balance, margin of stability (MOS), limb support) between the training and control groups (S1-Domain-Specific vs. S1-Control). We also compared key reactive balance outcomes between S1-Domain-Specific and the final slip of the control group (S24-Control).</div></div><div><h3>Results</h3><div>There was a lower rate of backward loss of balance on S1-Domain-Specific than S1-Control, along with higher post-slip MOS and increased hip height (i.e., greater limb support) (<em>p < 0.05</em>). These improvements were associated with a more anterior COM position, greater COM velocity in the anterior direction, and reduced slip distance. Post-slip MOS and hip height were not significantly different between S1-Domain-Specific and S24-Control.</div></div><div><h3>Discussion</h3><div>A single session of domain-specific balance training improved key components of reactive balance control and could significantly reduce slip-related fall risk. Domain-specific balance training might provide similar fall prevention benefits as perturbation training, with easier transition into clinics, communities, and homes.</div></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.humov.2024.103293
The study aimed to assess the validity and accuracy of estimating running jump (RJ) height using the high-speed camera of a smartphone and to evaluate the effectiveness of oral and visual feedback via a smartphone in enhancing RJ movements and height in skilled athletes. Twenty male college basketball players were randomly assigned to either the Oral Feedback (OF) or Oral and Visual Feedback (OVF) group. Initially, participants performed RJs on force plates while being recorded with an iPhone (240 fps). Jump heights were estimated using the video, force plate data, and position data from pelvic markers (JHiPhone, JHFP, and JHRM, respectively). Subsequently, each group received tailored feedback based on the RJ video. After feedback, participants performed RJs again, and jump heights were re-estimated. The JHiPhone measurements were systematically higher but showed acceptable random errors compared to JHRM, with excellent reproducibility and strong positive correlations with JHFP and JHRM. Only the OVF group showed significant improvements in jump height post-feedback. Our results indicate that JHiPhone is a valuable and accurate tool for sports settings. Additionally, the results demonstrated that visual feedback using a smartphone is effective and should complement oral feedback to enhance RJ jump height in real sports settings.
{"title":"Immediate effects of different feedback methods on running jump height and motion improvement in male college basketball players","authors":"","doi":"10.1016/j.humov.2024.103293","DOIUrl":"10.1016/j.humov.2024.103293","url":null,"abstract":"<div><div>The study aimed to assess the validity and accuracy of estimating running jump (RJ) height using the high-speed camera of a smartphone and to evaluate the effectiveness of oral and visual feedback via a smartphone in enhancing RJ movements and height in skilled athletes. Twenty male college basketball players were randomly assigned to either the Oral Feedback (OF) or Oral and Visual Feedback (OVF) group. Initially, participants performed RJs on force plates while being recorded with an iPhone (240 fps). Jump heights were estimated using the video, force plate data, and position data from pelvic markers (JH<sub>iPhone</sub>, JH<sub>FP</sub>, and JH<sub>RM</sub>, respectively). Subsequently, each group received tailored feedback based on the RJ video. After feedback, participants performed RJs again, and jump heights were re-estimated. The JH<sub>iPhone</sub> measurements were systematically higher but showed acceptable random errors compared to JH<sub>RM</sub>, with excellent reproducibility and strong positive correlations with JH<sub>FP</sub> and JH<sub>RM</sub>. Only the OVF group showed significant improvements in jump height post-feedback. Our results indicate that JH<sub>iPhone</sub> is a valuable and accurate tool for sports settings. Additionally, the results demonstrated that visual feedback using a smartphone is effective and should complement oral feedback to enhance RJ jump height in real sports settings.</div></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1016/j.humov.2024.103297
Gravity is a ubiquitous external force that must be considered when producing coordinated movements. Drop-landing is a popular task to study how humans cope with gravity, because anticipatory muscle activations can be released before the estimated ground contact. But the consequences of these anticipatory muscle activations have only been interpreted in terms of stiffening the lower-limbs in preparation for ground contact, without considering potential anticipatory kinematic consequences. The objective of this study is to quantify the kinematic consequences of anticipatory muscle activations in two different landing tasks, to clarify whether anticipatory muscle activations are adapted to cope with gravity, to the dynamic constraints of the movement to perform, or both.
Twenty young athletes performed drop-landing and drop-jumping from a 35 cm elevated platform. Sagittal angles and angular velocities of the hip, knee, and ankle joints, and acceleration of the foot were computed, as well as the onset of joint flexions and onset of foot vertical acceleration change.
We found the same pattern of anticipatory hip and knee flexion, both starting before ground contact in all participants and in both tasks. We found no anticipatory kinematics for the ankle joint. Consecutive to the hip and knee flexion, the foot accelerated upwards before ground contact.
Our results show that anticipatory muscle activations used by humans have systematic and invariant kinematic consequences during the air-time phase to cope with gravity: they initiate the hip and knee joints flexion before ground contact. This strategy likely limits the amount of ground reaction forces developed to oppose the gravity external force, and completes the stiffening role already described in the literature. These two complementary consequences —rotation and stiffening— seem to serve the same purpose of protecting the skeletal system. Since gravity is ubiquitous, these automated movements must be considered in other movements involving landing phases, such as heel strikes during gait.
{"title":"Evidence of invariant lower-limb kinematics in anticipation of ground contact during drop-landing and drop-jumping","authors":"","doi":"10.1016/j.humov.2024.103297","DOIUrl":"10.1016/j.humov.2024.103297","url":null,"abstract":"<div><div>Gravity is a ubiquitous external force that must be considered when producing coordinated movements. Drop-landing is a popular task to study how humans cope with gravity, because anticipatory muscle activations can be released before the estimated ground contact. But the consequences of these anticipatory muscle activations have only been interpreted in terms of stiffening the lower-limbs in preparation for ground contact, without considering potential anticipatory kinematic consequences. The objective of this study is to quantify the kinematic consequences of anticipatory muscle activations in two different landing tasks, to clarify whether anticipatory muscle activations are adapted to cope with gravity, to the dynamic constraints of the movement to perform, or both.</div><div>Twenty young athletes performed drop-landing and drop-jumping from a 35 cm elevated platform. Sagittal angles and angular velocities of the hip, knee, and ankle joints, and acceleration of the foot were computed, as well as the onset of joint flexions and onset of foot vertical acceleration change.</div><div>We found the same pattern of anticipatory hip and knee flexion, both starting <em>before</em> ground contact in all participants and in both tasks. We found no anticipatory kinematics for the ankle joint. Consecutive to the hip and knee flexion, the foot accelerated upwards before ground contact.</div><div>Our results show that anticipatory muscle activations used by humans have systematic and invariant kinematic consequences during the air-time phase to cope with gravity: they initiate the hip and knee joints flexion <em>before</em> ground contact. This strategy likely limits the amount of ground reaction forces developed to oppose the gravity external force, and completes the stiffening role already described in the literature. These two complementary consequences —rotation and stiffening— seem to serve the same purpose of protecting the skeletal system. Since gravity is ubiquitous, these automated movements must be considered in other movements involving landing phases, such as heel strikes during gait.</div></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1016/j.humov.2024.103295
Vision has previously been correlated with performance in acrobatic sports, highlighting visuomotor expertise adaptations. However, we still poorly understand the visuomotor strategies athletes use while executing twisting somersaults, even though this knowledge might be helpful for skill development. Thus, the present study sought to identify the differences in gaze behavior between elite and sub-elite trampolinists during the execution of four acrobatics of increasing difficulty. Seventeen inertial measurement units and a wearable eye-tracker were used to record the body and gaze kinematics of 17 trampolinists (8 elites, 9 sub-elites). Six typical metrics were analyzed using a mixed analysis of variance (ANOVA) with the Expertise as inter-subject and the Acrobatics as intra-subject factors. To complement this analysis, advanced temporal eye-tracking metrics are reported, such as the dwell time on areas of interest, the scan path on the trampoline bed, the temporal evolution of the gaze orientation endpoint (SPGO), and the time spent executing specific neck and eye strategies. A significant main effect of Expertise was only evidenced in one of the typical metrics, where elite athletes exhibited a higher number of fixations compared to sub-elites (p = 0.033). Significant main effects of Acrobatics were observed on all metrics (p < 0.05), revealing that gaze strategies are task-dependent in trampolining. The recordings of eyes and neck movements performed in this study confirmed the use of “spotting” at the beginning and end of the acrobatics. They also revealed a unique sport-specific visual strategy that we termed as self-motion detection. This strategy consists of not moving the eyes during fast head rotations, a strategy mainly used by trampolinists during the twisting phase. This study proposes a detailed exploration of trampolinists' gaze behavior in highly realistic settings and a temporal description of the visuomotor strategies to enhance understanding of perception-action interactions during the execution of twisting somersaults.
{"title":"A temporal quantitative analysis of visuomotor behavior during four twisting somersaults in elite and sub-elite trampolinists","authors":"","doi":"10.1016/j.humov.2024.103295","DOIUrl":"10.1016/j.humov.2024.103295","url":null,"abstract":"<div><div>Vision has previously been correlated with performance in acrobatic sports, highlighting visuomotor expertise adaptations. However, we still poorly understand the visuomotor strategies athletes use while executing twisting somersaults, even though this knowledge might be helpful for skill development. Thus, the present study sought to identify the differences in gaze behavior between elite and sub-elite trampolinists during the execution of four acrobatics of increasing difficulty. Seventeen inertial measurement units and a wearable eye-tracker were used to record the body and gaze kinematics of 17 trampolinists (8 elites, 9 sub-elites). Six typical metrics were analyzed using a mixed analysis of variance (ANOVA) with the <em>Expertise</em> as inter-subject and the <em>Acrobatics</em> as intra-subject factors. To complement this analysis, advanced temporal eye-tracking metrics are reported, such as the dwell time on areas of interest, the scan path on the trampoline bed, the temporal evolution of the gaze orientation endpoint (SPGO), and the time spent executing specific neck and eye strategies. A significant main effect of Expertise was only evidenced in one of the typical metrics, where elite athletes exhibited a higher number of fixations compared to sub-elites (<em>p</em> = 0.033). Significant main effects of <em>Acrobatics</em> were observed on all metrics (<em>p</em> < 0.05), revealing that gaze strategies are task-dependent in trampolining. The recordings of eyes and neck movements performed in this study confirmed the use of <em>“spotting”</em> at the beginning and end of the acrobatics. They also revealed a unique sport-specific visual strategy that we termed as <em>self-motion detection</em>. This strategy consists of not moving the eyes during fast head rotations, a strategy mainly used by trampolinists during the twisting phase. This study proposes a detailed exploration of trampolinists' gaze behavior in highly realistic settings and a temporal description of the visuomotor strategies to enhance understanding of perception-action interactions during the execution of twisting somersaults.</div></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1016/j.humov.2024.103296
The purpose of this study was to investigate the optimal challenge point for learning motor skills in children with and without attention deficit/hyperactivity disorder (ADHD). Ninety-six 9- to 10-year-old children, including 48 children with ADHD and 48 neurotypical children, were randomly assigned to one of four practice groups with varying levels of nominal and functional task difficulty. They performed 63 trials of a dart throwing task in the acquisition phase and 18 trials in the retention and transfer tests a day later. The results showed that neurotypical children outperformed children with ADHD in all phases of the study. Both groups improved in the acquisition phase and performed better in the retention and transfer tests. Interestingly, low nominal task difficulty was associated with better learning for both groups, despite lower average performance for children with ADHD. Thus, despite their performance differences, we did not find a difference in the effective challenge point between children with ADHD and their neurotypical peers.
{"title":"Determining the optimal challenge point for learning motor skills in children with attention deficit/hyperactivity disorder","authors":"","doi":"10.1016/j.humov.2024.103296","DOIUrl":"10.1016/j.humov.2024.103296","url":null,"abstract":"<div><div>The purpose of this study was to investigate the optimal challenge point for learning motor skills in children with and without attention deficit/hyperactivity disorder (ADHD). Ninety-six 9- to 10-year-old children, including 48 children with ADHD and 48 neurotypical children, were randomly assigned to one of four practice groups with varying levels of nominal and functional task difficulty. They performed 63 trials of a dart throwing task in the acquisition phase and 18 trials in the retention and transfer tests a day later. The results showed that neurotypical children outperformed children with ADHD in all phases of the study. Both groups improved in the acquisition phase and performed better in the retention and transfer tests. Interestingly, low nominal task difficulty was associated with better learning for both groups, despite lower average performance for children with ADHD. Thus, despite their performance differences, we did not find a difference in the effective challenge point between children with ADHD and their neurotypical peers.</div></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1016/j.humov.2024.103289
Movement variability describes an individual's capacity to repeatedly perform motor skills and provides better understanding of coordination during a task. The purpose of this research was to assess the impact that task type and sex assigned at birth have on movement variability and load symmetry in healthy younger adults. It was hypothesized that the between trial variability of peak impact force and average loading rate would not differ between sexes or between tasks (level walking, stair ascent, stair descent, and sit-to-stand) and that load symmetry would not differ between the four tasks for an individual participant using a level of significance of α = 0.05. Peak impact force (PIF) and average loading rate (ALR) were measured during level walking, stair ascent and descent, and sit-to-stand using loadsol® sensors collecting at 200 Hz (Novel Electronics, Pittsburg, PA, USA). Coefficients of variation (CV) and the Absolute Symmetry Index (ASI) were used to assess symmetry and movement variability. Between the 39 female and 33 male young adults that participated in this study, significant differences (p < 0.001) were observed between groups for mass, height, and limb length. PIF did not show an interaction between sex and task (p = 0.627) or between sexes (p = 0.685) but did show between-task differences (p < 0.001). The PIF ASI also showed a difference between tasks (p < 0.001). Tukey's post hoc testing showed that the PIF ASI differences between the sit-to-stand task and the other tasks were clinically meaningful (d > 0.8). The ALR did not show an interaction between sex and task (p = 0.069) or between sexes (p = 0.624) but did show between-task differences (p < 0.001). Tukey's showed that the ALR was different between tasks and was clinically meaningful (d > 0.8) except between level walking and stair ascent (p = 0.546). The ALR ASI showed a different between tasks (p < 0.001). Tukey's showed that the ALR ASI differences between tasks were all clinically meaningful (d > 0.8) except between level walking and stair ascent (p = 0.220).These findings suggest that the movement variability for all loading metrics that existed between tasks could be due to difference in motor control and the width of the base of support needed to complete the various tasks. For example, the joint coordination to complete a sit-to-stand task is different than what is needed during walking, stair ascent and stair descent. Understanding variability observed between daily tasks helps identify movement patterns that could be potential risk factors for injury.
{"title":"Movement variability and limb loading symmetry during simulated daily functional tasks","authors":"","doi":"10.1016/j.humov.2024.103289","DOIUrl":"10.1016/j.humov.2024.103289","url":null,"abstract":"<div><div>Movement variability describes an individual's capacity to repeatedly perform motor skills and provides better understanding of coordination during a task. The purpose of this research was to assess the impact that task type and sex assigned at birth have on movement variability and load symmetry in healthy younger adults. It was hypothesized that the between trial variability of peak impact force and average loading rate would not differ between sexes or between tasks (level walking, stair ascent, stair descent, and sit-to-stand) and that load symmetry would not differ between the four tasks for an individual participant using a level of significance of α = 0.05. Peak impact force (PIF) and average loading rate (ALR) were measured during level walking, stair ascent and descent, and sit-to-stand using loadsol® sensors collecting at 200 Hz (Novel Electronics, Pittsburg, PA, USA). Coefficients of variation (CV) and the Absolute Symmetry Index (ASI) were used to assess symmetry and movement variability. Between the 39 female and 33 male young adults that participated in this study, significant differences (<em>p</em> < 0.001) were observed between groups for mass, height, and limb length. PIF did not show an interaction between sex and task (<em>p</em> = 0.627) or between sexes (<em>p</em> = 0.685) but did show between-task differences (<em>p</em> < 0.001). The PIF ASI also showed a difference between tasks (p < 0.001). Tukey's post hoc testing showed that the PIF ASI differences between the sit-to-stand task and the other tasks were clinically meaningful (<em>d</em> > 0.8). The ALR did not show an interaction between sex and task (<em>p</em> = 0.069) or between sexes (<em>p</em> = 0.624) but did show between-task differences (<em>p</em> < 0.001). Tukey's showed that the ALR was different between tasks and was clinically meaningful (<em>d</em> > 0.8) except between level walking and stair ascent (<em>p</em> = 0.546). The ALR ASI showed a different between tasks (<em>p</em> < 0.001). Tukey's showed that the ALR ASI differences between tasks were all clinically meaningful (<em>d</em> > 0.8) except between level walking and stair ascent (<em>p</em> = 0.220).These findings suggest that the movement variability for all loading metrics that existed between tasks could be due to difference in motor control and the width of the base of support needed to complete the various tasks. For example, the joint coordination to complete a sit-to-stand task is different than what is needed during walking, stair ascent and stair descent. Understanding variability observed between daily tasks helps identify movement patterns that could be potential risk factors for injury.</div></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}