Albert Fert, Ramamoorthy Ramesh, Vincent Garcia, Fèlix Casanova, Manuel Bibes
{"title":"Electrical control of magnetism by electric field and current-induced torques","authors":"Albert Fert, Ramamoorthy Ramesh, Vincent Garcia, Fèlix Casanova, Manuel Bibes","doi":"10.1103/revmodphys.96.015005","DOIUrl":null,"url":null,"abstract":"The remanent magnetization of ferromagnets has long been studied and used to store binary information. While early magnetic memory designs relied on magnetization switching by locally generated magnetic fields, key insights in condensed matter physics later suggested the possibility of doing it by electrical means instead. In the 1990s, Slonczewski and Berger formulated the concept of current-induced spin torques in magnetic multilayers through which a spin-polarized current generated by a first ferromagnet may be used to switch the magnetization of a second one. This discovery drove the development of spin-transfer-torque magnetic random-access memories (MRAMs). More recent fundamental research revealed other types of current-induced torques named spin-orbit torques (SOTs) and will lead to a new generation of devices including SOT MRAMs and skyrmion-based devices. Parallel to these advances, multiferroics and their magnetoelectric coupling, first investigated experimentally in the 1960s, experienced a renaissance. Dozens of multiferroic compounds with new magnetoelectric coupling mechanisms were discovered and high-quality multiferroic films were synthesized (notably of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mrow><mi>BiFeO</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math>), also leading to novel device concepts for information and communication technology such as the magnetoelectric spin-orbit (MESO) transistor. The story of the electrical switching of magnetization, which is discussed in this review, is that of a dance between fundamental research (in spintronics, condensed matter physics, and materials science) and technology (MRAMs, MESO transistors, microwave emitters, spin diodes, skyrmion-based devices, components for neuromorphics, etc.). This <i>pas de deux</i> has led to major scientific and technological breakthroughs in recent decades (such as the conceptualization of pure spin currents, the observation of magnetic skyrmions, and the discovery of spin-charge interconversion effects). As a result, this field has not only propelled MRAMs into consumer electronics products but also fueled discoveries in adjacent research areas such as ferroelectrics or magnonics. In this review, recent advances in the control of magnetism by electric fields and by current-induced torques are covered. Fundamental concepts in these two directions are reviewed first, their combination is then discussed, and finally current various families of devices harnessing the electrical control of magnetic properties for various application fields are addressed. The review concludes by giving perspectives in terms of both emerging fundamental physics concepts and new directions in materials science.","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":"15 1","pages":""},"PeriodicalIF":45.9000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/revmodphys.96.015005","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The remanent magnetization of ferromagnets has long been studied and used to store binary information. While early magnetic memory designs relied on magnetization switching by locally generated magnetic fields, key insights in condensed matter physics later suggested the possibility of doing it by electrical means instead. In the 1990s, Slonczewski and Berger formulated the concept of current-induced spin torques in magnetic multilayers through which a spin-polarized current generated by a first ferromagnet may be used to switch the magnetization of a second one. This discovery drove the development of spin-transfer-torque magnetic random-access memories (MRAMs). More recent fundamental research revealed other types of current-induced torques named spin-orbit torques (SOTs) and will lead to a new generation of devices including SOT MRAMs and skyrmion-based devices. Parallel to these advances, multiferroics and their magnetoelectric coupling, first investigated experimentally in the 1960s, experienced a renaissance. Dozens of multiferroic compounds with new magnetoelectric coupling mechanisms were discovered and high-quality multiferroic films were synthesized (notably of ), also leading to novel device concepts for information and communication technology such as the magnetoelectric spin-orbit (MESO) transistor. The story of the electrical switching of magnetization, which is discussed in this review, is that of a dance between fundamental research (in spintronics, condensed matter physics, and materials science) and technology (MRAMs, MESO transistors, microwave emitters, spin diodes, skyrmion-based devices, components for neuromorphics, etc.). This pas de deux has led to major scientific and technological breakthroughs in recent decades (such as the conceptualization of pure spin currents, the observation of magnetic skyrmions, and the discovery of spin-charge interconversion effects). As a result, this field has not only propelled MRAMs into consumer electronics products but also fueled discoveries in adjacent research areas such as ferroelectrics or magnonics. In this review, recent advances in the control of magnetism by electric fields and by current-induced torques are covered. Fundamental concepts in these two directions are reviewed first, their combination is then discussed, and finally current various families of devices harnessing the electrical control of magnetic properties for various application fields are addressed. The review concludes by giving perspectives in terms of both emerging fundamental physics concepts and new directions in materials science.
期刊介绍:
Reviews of Modern Physics (RMP) stands as the world's foremost physics review journal and is the most extensively cited publication within the Physical Review collection. Authored by leading international researchers, RMP's comprehensive essays offer exceptional coverage of a topic, providing context and background for contemporary research trends. Since 1929, RMP has served as an unparalleled platform for authoritative review papers across all physics domains. The journal publishes two types of essays: Reviews and Colloquia. Review articles deliver the present state of a given topic, including historical context, a critical synthesis of research progress, and a summary of potential future developments.