Dang Nguyen Dong Phuong, Nguyen Duc Vu, Nguyen Kim Loi
{"title":"Historical trends and future projections of annual rainfall from CMIP6 models in Ho Chi Minh City, Vietnam","authors":"Dang Nguyen Dong Phuong, Nguyen Duc Vu, Nguyen Kim Loi","doi":"10.3354/cr01736","DOIUrl":null,"url":null,"abstract":"ABSTRACT: Climate risks have posed a major threat to many local communities living in low-lying coastal megacities across the globe, including Ho Chi Minh City, Vietnam. Hence, this study first aimed to contribute towards a comprehensive understanding of temporal trend patterns of annual rainfall and absolute extremes in Ho Chi Minh City over the last 4 decades (1980-2022) through multiple non-parametric statistical trend tests. We employed the quantile delta mapping (QDM) method to develop daily bias-corrected rainfall data based on the outputs in the latest Coupled Model Intercomparison Project phase 6 (CMIP6) under 8 shared socio-economic pathway (SSP) greenhouse gas emission scenarios. Evaluation of model performance was implemented by repeatedly omitting 5 successive years in turn for estimating testing errors. The outcomes indicate the high applicability of well-calibrated transfer functions, even for high quantiles, to the production of future rainfall scenarios. The projected changes in annual rainfall and absolute extremes were obtained by estimating multi-model medians from CMIP6 models for future periods (i.e. 2021-2040, 2041-2060, 2061-2080, and 2081-2100), with reference to the base period (1995-2014). In general, annual rainfall in Ho Chi Minh City is projected to increase substantially, and Thu Duc station consistently shows the highest increases in annual rainfall. Projected changes are approximately 30.9% (8.3 to 77.8%) under the high-end scenario (i.e. SSP5-8.5) by the end of the 21st century. It is expected that these findings will yield several solid arguments for mitigating climate-related risks in Ho Chi Minh City.","PeriodicalId":10438,"journal":{"name":"Climate Research","volume":"363 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3354/cr01736","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT: Climate risks have posed a major threat to many local communities living in low-lying coastal megacities across the globe, including Ho Chi Minh City, Vietnam. Hence, this study first aimed to contribute towards a comprehensive understanding of temporal trend patterns of annual rainfall and absolute extremes in Ho Chi Minh City over the last 4 decades (1980-2022) through multiple non-parametric statistical trend tests. We employed the quantile delta mapping (QDM) method to develop daily bias-corrected rainfall data based on the outputs in the latest Coupled Model Intercomparison Project phase 6 (CMIP6) under 8 shared socio-economic pathway (SSP) greenhouse gas emission scenarios. Evaluation of model performance was implemented by repeatedly omitting 5 successive years in turn for estimating testing errors. The outcomes indicate the high applicability of well-calibrated transfer functions, even for high quantiles, to the production of future rainfall scenarios. The projected changes in annual rainfall and absolute extremes were obtained by estimating multi-model medians from CMIP6 models for future periods (i.e. 2021-2040, 2041-2060, 2061-2080, and 2081-2100), with reference to the base period (1995-2014). In general, annual rainfall in Ho Chi Minh City is projected to increase substantially, and Thu Duc station consistently shows the highest increases in annual rainfall. Projected changes are approximately 30.9% (8.3 to 77.8%) under the high-end scenario (i.e. SSP5-8.5) by the end of the 21st century. It is expected that these findings will yield several solid arguments for mitigating climate-related risks in Ho Chi Minh City.
期刊介绍:
Basic and applied research devoted to all aspects of climate – past, present and future. Investigation of the reciprocal influences between climate and organisms (including climate effects on individuals, populations, ecological communities and entire ecosystems), as well as between climate and human societies. CR invites high-quality Research Articles, Reviews, Notes and Comments/Reply Comments (see Clim Res 20:187), CR SPECIALS and Opinion Pieces. For details see the Guidelines for Authors. Papers may be concerned with:
-Interactions of climate with organisms, populations, ecosystems, and human societies
-Short- and long-term changes in climatic elements, such as humidity and precipitation, temperature, wind velocity and storms, radiation, carbon dioxide, trace gases, ozone, UV radiation
-Human reactions to climate change; health, morbidity and mortality; clothing and climate; indoor climate management
-Climate effects on biotic diversity. Paleoecology, species abundance and extinction, natural resources and water levels
-Historical case studies, including paleoecology and paleoclimatology
-Analysis of extreme climatic events, their physicochemical properties and their time–space dynamics. Climatic hazards
-Land-surface climatology. Soil degradation, deforestation, desertification
-Assessment and implementation of adaptations and response options
-Applications of climate models and modelled future climate scenarios. Methodology in model development and application