Tianhan Xu, Jian Wang, Yuhao Lu, Danling Wang, Li Yu, Ye Tian
{"title":"Exploring pore-scale production characteristics of oil shale after CO2 huff ‘n’ puff in fractured shale with varied permeability","authors":"Tianhan Xu, Jian Wang, Yuhao Lu, Danling Wang, Li Yu, Ye Tian","doi":"10.1007/s40789-024-00664-2","DOIUrl":null,"url":null,"abstract":"<p>Recent studies have indicated that the injection of carbon dioxide (CO<sub>2</sub>) can lead to increased oil recovery in fractured shale reservoirs following natural depletion. Despite advancements in understanding mass exchange processes in subsurface formations, there remains a knowledge gap concerning the disparities in these processes between the matrix and fractures at the pore scale in formations with varying permeability. This study aims to experimentally investigate the CO<sub>2</sub> diffusion behaviors and in situ oil recovery through a CO<sub>2</sub> huff ‘n’ puff process in the Jimsar shale oil reservoir. To achieve this, we designed three matrix-fracture models with different permeabilities (0.074 mD, 0.170 mD, and 0.466 mD) and experimented at 30 MPa and 91 °C. The oil concentration in both the matrix and fracture was monitored using a low-field nuclear magnetic resonance (LF-NMR) technique to quantify in situ oil recovery and elucidate mass-exchange behaviors. The results showed that after three cycles of CO<sub>2</sub> huff ‘n’ puff, the total recovery degree increased from 30.28% to 34.95% as the matrix permeability of the core samples increased from 0.074 to 0.466 mD, indicating a positive correlation between CO<sub>2</sub> extraction efficiency and matrix permeability. Under similar fracture conditions, the increase in matrix permeability further promoted CO<sub>2</sub> extraction efficiency during CO<sub>2</sub> huff ‘n’ puff. Specifically, the increase in matrix permeability of the core had the greatest effect on the extraction of the first-cycle injection in large pores, which increased from 16.42% to 36.64%. The findings from our research provide valuable insights into the CO<sub>2</sub> huff ‘n’ puff effects in different pore sizes following fracturing under varying permeability conditions, shedding light on the mechanisms of CO<sub>2</sub>-enhanced oil recovery in fractured shale oil reservoirs.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-024-00664-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies have indicated that the injection of carbon dioxide (CO2) can lead to increased oil recovery in fractured shale reservoirs following natural depletion. Despite advancements in understanding mass exchange processes in subsurface formations, there remains a knowledge gap concerning the disparities in these processes between the matrix and fractures at the pore scale in formations with varying permeability. This study aims to experimentally investigate the CO2 diffusion behaviors and in situ oil recovery through a CO2 huff ‘n’ puff process in the Jimsar shale oil reservoir. To achieve this, we designed three matrix-fracture models with different permeabilities (0.074 mD, 0.170 mD, and 0.466 mD) and experimented at 30 MPa and 91 °C. The oil concentration in both the matrix and fracture was monitored using a low-field nuclear magnetic resonance (LF-NMR) technique to quantify in situ oil recovery and elucidate mass-exchange behaviors. The results showed that after three cycles of CO2 huff ‘n’ puff, the total recovery degree increased from 30.28% to 34.95% as the matrix permeability of the core samples increased from 0.074 to 0.466 mD, indicating a positive correlation between CO2 extraction efficiency and matrix permeability. Under similar fracture conditions, the increase in matrix permeability further promoted CO2 extraction efficiency during CO2 huff ‘n’ puff. Specifically, the increase in matrix permeability of the core had the greatest effect on the extraction of the first-cycle injection in large pores, which increased from 16.42% to 36.64%. The findings from our research provide valuable insights into the CO2 huff ‘n’ puff effects in different pore sizes following fracturing under varying permeability conditions, shedding light on the mechanisms of CO2-enhanced oil recovery in fractured shale oil reservoirs.
期刊介绍:
The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field.
The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects.
The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.