Wheel wear prediction for high-speed trains by considering wheel-rail elastic deformation

Gengzhuo Miao, Ren Luo, Huailong Shi
{"title":"Wheel wear prediction for high-speed trains by considering wheel-rail elastic deformation","authors":"Gengzhuo Miao, Ren Luo, Huailong Shi","doi":"10.1177/09544097241239089","DOIUrl":null,"url":null,"abstract":"Wheel-rail geometric parameters are crucial for determining wheel wear in high-speed trains. Under the action of a wheel-rail load, both the wheel and rail suffer elastic deformation, which affects the wheel-rail contact relationship and further influences the wheel profile and its evolution. In this study, a field test was conducted on a high-speed train operating at 250 km/h, and the worn wheel profiles and wear curves were continuously measured for one reprofiling cycle. Subsequently, a vehicle dynamics model is built using a wheel wear prediction model based on the integrated USFD wear algorithm. In this model, the finite element model of the wheel-rail contact is considered. The wheel-rail geometric parameters are obtained by determining their elastic deformation through the finite element method, which considers the effect of three parameters: the track gauge, back-to-back space of the wheelset, and rail cant. After considering the wheel-rail elastic deformation, the track gauge decreases from 1435 to 1434.5 mm, the back-to-back space varies from 1353 to 1352.3 mm, and the rail cant changes from 1:40 to approximately 1:37. Finally, the simulation and experimental results are compared, revealing that the wheel-rail elastic deformation has a significant impact on the wheel wear after the vehicle travels 150,000 km. The wear depth and wheel-rail equivalent conicity after considering the elastic deformation are closer to the measured results.","PeriodicalId":54567,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544097241239089","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Wheel-rail geometric parameters are crucial for determining wheel wear in high-speed trains. Under the action of a wheel-rail load, both the wheel and rail suffer elastic deformation, which affects the wheel-rail contact relationship and further influences the wheel profile and its evolution. In this study, a field test was conducted on a high-speed train operating at 250 km/h, and the worn wheel profiles and wear curves were continuously measured for one reprofiling cycle. Subsequently, a vehicle dynamics model is built using a wheel wear prediction model based on the integrated USFD wear algorithm. In this model, the finite element model of the wheel-rail contact is considered. The wheel-rail geometric parameters are obtained by determining their elastic deformation through the finite element method, which considers the effect of three parameters: the track gauge, back-to-back space of the wheelset, and rail cant. After considering the wheel-rail elastic deformation, the track gauge decreases from 1435 to 1434.5 mm, the back-to-back space varies from 1353 to 1352.3 mm, and the rail cant changes from 1:40 to approximately 1:37. Finally, the simulation and experimental results are compared, revealing that the wheel-rail elastic deformation has a significant impact on the wheel wear after the vehicle travels 150,000 km. The wear depth and wheel-rail equivalent conicity after considering the elastic deformation are closer to the measured results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过考虑轮轨弹性变形预测高速列车的车轮磨损情况
轮轨几何参数对确定高速列车的车轮磨损至关重要。在轮轨载荷作用下,车轮和钢轨都会发生弹性变形,从而影响轮轨接触关系,并进一步影响车轮轮廓及其演变。在这项研究中,对一列运行速度为 250 km/h 的高速列车进行了实地测试,并在一个重修周期内连续测量了磨损的车轮轮廓和磨损曲线。随后,使用基于集成 USFD 磨损算法的车轮磨损预测模型建立了车辆动力学模型。在该模型中,考虑了轮轨接触的有限元模型。通过有限元方法确定轮轨的弹性变形,从而获得轮轨的几何参数,该方法考虑了三个参数的影响:轨距、轮对的背对背空间和轨道倾斜度。在考虑轮轨弹性变形后,轨距从 1435 毫米减小到 1434.5 毫米,背对背空间从 1353 毫米变为 1352.3 毫米,轨道倾角从 1:40 变为约 1:37。最后,对模拟结果和实验结果进行了比较,结果表明,车辆行驶 15 万公里后,轮轨弹性变形对车轮磨损有显著影响。考虑弹性变形后的磨损深度和轮轨等效锥度更接近测量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
10.00%
发文量
91
审稿时长
7 months
期刊介绍: The Journal of Rail and Rapid Transit is devoted to engineering in its widest interpretation applicable to rail and rapid transit. The Journal aims to promote sharing of technical knowledge, ideas and experience between engineers and researchers working in the railway field.
期刊最新文献
The influence of semi-actively controlled magnetorheological bogie yaw dampers on the guiding behaviour of a railway vehicle in an S-curve: Simulation and on-track test Mechanism and improvement for tail vehicle swaying of power-centralized EMUs Long railway track modelling – A parallel computing approach Research on ultrasonic guided wave-based high-speed turnout switch rail base flaw detection Ballast stiffness estimation based on measurements during dynamic track stabilization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1