Jibin Zhou, Xue Li, Duiping Liu, Feng Wang, Tao Zhang, Mao Ye, Zhongmin Liu
{"title":"A hybrid spatial-temporal deep learning prediction model of industrial methanol-to-olefins process","authors":"Jibin Zhou, Xue Li, Duiping Liu, Feng Wang, Tao Zhang, Mao Ye, Zhongmin Liu","doi":"10.1007/s11705-024-2403-7","DOIUrl":null,"url":null,"abstract":"<div><p>Methanol-to-olefins, as a promising non-oil pathway for the synthesis of light olefins, has been successfully industrialized. The accurate prediction of process variables can yield significant benefits for advanced process control and optimization. The challenge of this task is underscored by the failure of traditional methods in capturing the complex characteristics of industrial processes, such as high nonlinearities, dynamics, and data distribution shift caused by diverse operating conditions. In this paper, we propose a novel hybrid spatial-temporal deep learning prediction model to address these issues. Firstly, a unique data normalization technique called reversible instance normalization is employed to solve the problem of different data distributions. Subsequently, convolutional neural network integrated with the self-attention mechanism are utilized to extract the temporal patterns. Meanwhile, a multi-graph convolutional network is leveraged to model the spatial interactions. Afterward, the extracted temporal and spatial features are fused as input into a fully connected neural network to complete the prediction. Finally, the outputs are denormalized to obtain the ultimate results. The monitoring results of the dynamic trends of process variables in an actual industrial methanol-to-olefins process demonstrate that our model not only achieves superior prediction performance but also can reveal complex spatial-temporal relationships using the learned attention matrices and adjacency matrices, making the model more interpretable. Lastly, this model is deployed onto an end-to-end Industrial Internet Platform, which achieves effective practical results.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2403-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Methanol-to-olefins, as a promising non-oil pathway for the synthesis of light olefins, has been successfully industrialized. The accurate prediction of process variables can yield significant benefits for advanced process control and optimization. The challenge of this task is underscored by the failure of traditional methods in capturing the complex characteristics of industrial processes, such as high nonlinearities, dynamics, and data distribution shift caused by diverse operating conditions. In this paper, we propose a novel hybrid spatial-temporal deep learning prediction model to address these issues. Firstly, a unique data normalization technique called reversible instance normalization is employed to solve the problem of different data distributions. Subsequently, convolutional neural network integrated with the self-attention mechanism are utilized to extract the temporal patterns. Meanwhile, a multi-graph convolutional network is leveraged to model the spatial interactions. Afterward, the extracted temporal and spatial features are fused as input into a fully connected neural network to complete the prediction. Finally, the outputs are denormalized to obtain the ultimate results. The monitoring results of the dynamic trends of process variables in an actual industrial methanol-to-olefins process demonstrate that our model not only achieves superior prediction performance but also can reveal complex spatial-temporal relationships using the learned attention matrices and adjacency matrices, making the model more interpretable. Lastly, this model is deployed onto an end-to-end Industrial Internet Platform, which achieves effective practical results.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.