Pub Date : 2024-09-20DOI: 10.1007/s11705-024-2503-4
Gabriel Gustafsson, Guillermo Martinez Castilla, David Pallarès, Henrik Ström
The lateral dispersion of bed material in a bubbling fluidized bed is a key parameter in the prediction of the effective in-bed heat transfer and transport of heterogenous reactants, properties important for the successful design and scale-up of thermal and/or chemical processes. Computational fluid dynamics simulations offer means to investigate such beds in silico and derive effective parameters for reduced-order models. In this work, we use the Eulerian-Eulerian two-fluid model with the kinetic theory of granular flow to perform numerical simulations of solids mixing and heat transfer in bubbling fluidized beds. We extract the lateral solids dispersion coefficient using four different methods: by fitting the transient response of the bed to (1) an ideal heat or (2) mass transfer problem, (3) by extracting the time-averaged heat transfer behavior and (4) through a momentum transfer approach in an analogy with single-phase turbulence. The method (2) fitting against a mass transfer problem is found to produce robust results at a reasonable computational cost when assessed against experiments. Furthermore, the gas inlet boundary condition is shown to have a significant effect on the prediction, indicating a need to account for nozzle characteristics when simulating industrial cases.
{"title":"Effective lateral dispersion of momentum, heat and mass in bubbling fluidized beds","authors":"Gabriel Gustafsson, Guillermo Martinez Castilla, David Pallarès, Henrik Ström","doi":"10.1007/s11705-024-2503-4","DOIUrl":"10.1007/s11705-024-2503-4","url":null,"abstract":"<div><p>The lateral dispersion of bed material in a bubbling fluidized bed is a key parameter in the prediction of the effective in-bed heat transfer and transport of heterogenous reactants, properties important for the successful design and scale-up of thermal and/or chemical processes. Computational fluid dynamics simulations offer means to investigate such beds in silico and derive effective parameters for reduced-order models. In this work, we use the Eulerian-Eulerian two-fluid model with the kinetic theory of granular flow to perform numerical simulations of solids mixing and heat transfer in bubbling fluidized beds. We extract the lateral solids dispersion coefficient using four different methods: by fitting the transient response of the bed to (1) an ideal heat or (2) mass transfer problem, (3) by extracting the time-averaged heat transfer behavior and (4) through a momentum transfer approach in an analogy with single-phase turbulence. The method (2) fitting against a mass transfer problem is found to produce robust results at a reasonable computational cost when assessed against experiments. Furthermore, the gas inlet boundary condition is shown to have a significant effect on the prediction, indicating a need to account for nozzle characteristics when simulating industrial cases.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11705-024-2503-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1007/s11705-024-2501-6
Mengjiao Liang, Wenwen Cao, Yaodong Huang
A class of supramolecular binary hydrogels is formed from dodecylamine or tridecylamine and sparing carboxylic acids (with amine/acid molar ratio ⩾ 18). These hydrogels exhibit a remarkable thermally reversible four-phase transition. On heating, they transition from gel one (G1)-to-sol one (Sol1), then to gel two (G2)-to-sol two (Sol2). On cooling, they revert from Sol2-to-G2-to-Sol1-to-G1. Additionally, several G1 and G2 hydrogels undergo thermally reversible gel-to-gel phase transitions, which are reflected by translucent-opaque and opaque-translucent changes in their appearance. The nature of the four-phase transformation was analyzed using a range of techniques. Scanning electron microscopy images confirmed that the fibers of the opaque hydrogel at high temperatures were considerably larger than those of its translucent counterpart at low temperatures. Fluorescence emission spectra demonstrated that higher temperatures, higher amine/acid ratios, and greater acid hydrophobicity increased the hydrophobic interactions. Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopic analyses confirmed the existence of hydrogen-bonding interactions and aggregation in the hydrogels. X-ray diffraction profiles indicated that the hydrogels adopt lamellar structures. The findings advance our current understanding of the phase transition of supramolecular gels and facilitate the constitution of binary or multicomponent gels, providing a practical way to create new smart functional materials.
{"title":"Reversible heat-set four-phase transitions of gel1-to-sol1-to-gel2-to-sol2 in binary hydrogels","authors":"Mengjiao Liang, Wenwen Cao, Yaodong Huang","doi":"10.1007/s11705-024-2501-6","DOIUrl":"10.1007/s11705-024-2501-6","url":null,"abstract":"<div><p>A class of supramolecular binary hydrogels is formed from dodecylamine or tridecylamine and sparing carboxylic acids (with amine/acid molar ratio ⩾ 18). These hydrogels exhibit a remarkable thermally reversible four-phase transition. On heating, they transition from gel one (G<sup>1</sup>)-to-sol one (Sol<sup>1</sup>), then to gel two (G<sup>2</sup>)-to-sol two (Sol<sup>2</sup>). On cooling, they revert from Sol<sup>2</sup>-to-G<sup>2</sup>-to-Sol<sup>1</sup>-to-G<sup>1</sup>. Additionally, several G<sup>1</sup> and G<sup>2</sup> hydrogels undergo thermally reversible gel-to-gel phase transitions, which are reflected by translucent-opaque and opaque-translucent changes in their appearance. The nature of the four-phase transformation was analyzed using a range of techniques. Scanning electron microscopy images confirmed that the fibers of the opaque hydrogel at high temperatures were considerably larger than those of its translucent counterpart at low temperatures. Fluorescence emission spectra demonstrated that higher temperatures, higher amine/acid ratios, and greater acid hydrophobicity increased the hydrophobic interactions. Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopic analyses confirmed the existence of hydrogen-bonding interactions and aggregation in the hydrogels. X-ray diffraction profiles indicated that the hydrogels adopt lamellar structures. The findings advance our current understanding of the phase transition of supramolecular gels and facilitate the constitution of binary or multicomponent gels, providing a practical way to create new smart functional materials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1007/s11705-024-2502-5
Murugesan Panneerselvam, Marcelo Albuquerque, Iuri Soter Viana Segtovich, Frederico W. Tavares, Luciano T. Costa
This study investigates the detailed mechanism of CO2 conversion to CO using the manganese(I) diimine electrocatalyst [Mn(pyrox)(CO)3Br], synthesized by Christoph Steinlechner and coworkers. Employing density functional theory calculations, we thoroughly explore the electrocatalytic pathway of CO2 reduction alongside the competing hydrogen evolution reaction. Our analysis reveals the significant role of diimine nitrogen coordination in enhancing the electron density of the Mn center, thereby favoring both CO2 reduction and hydrogen evolution reaction thermodynamically. Furthermore, we observe that triethanolamine (TEOA) stabilizes transition states, aiding in CO2 fixation and reduction. The critical steps influencing the reaction rate involve breaking the MnC(O)–OH bond during CO2 reduction and cleaving the MnH–H–TEOA bond in the hydrogen evolution reaction. We explain the preference for CO2 conversion to CO over H2 evolution due to the higher energy barrier in forming the Mn-H2 species during H2 production. Our findings suggest the potential for tuning the electron density of the Mn center to enhance reactivity and selectivity in CO2 reduction. Additionally, we analyze potential competing reactions, focusing on electrocatalytic processes for CO2 reduction and evaluating “protonation-first” and “reduction-first” pathways through density functional theory calculations of redox potentials and Gibbs free energies. This analysis indicates the predominance of the “reduction-first” pathway in CO production, especially under high applied potential conditions. Moreover, our research highlights the selectivity of [Mn(pyrox)(CO)3Br] toward CO production over HCOO− and H2 formation, proposing avenues for future research to expand upon these findings by using larger basis sets and exploring additional functionalized ligands.
本研究利用 Christoph Steinlechner 及其同事合成的二(I)亚胺锰电催化剂 [Mn(pyrox)(CO)3Br],研究了将 CO2 转化为 CO 的详细机理。利用密度泛函理论计算,我们深入探讨了二氧化碳还原与竞争性氢进化反应的电催化途径。我们的分析揭示了二亚胺氮配位在提高锰中心电子密度方面的重要作用,从而在热力学上有利于二氧化碳还原和氢进化反应。此外,我们还观察到三乙醇胺(TEOA)稳定了过渡态,有助于二氧化碳的固定和还原。影响反应速率的关键步骤包括在二氧化碳还原过程中断开 MnC(O)-OH 键,以及在氢演化反应中裂解 MnH-H-TEOA 键。我们解释了二氧化碳转化为一氧化碳比氢气进化更优先的原因,因为在产生氢气的过程中形成 Mn-H2 物种的能量障碍更高。我们的研究结果表明,可以通过调整 Mn 中心的电子密度来提高二氧化碳还原反应的活性和选择性。此外,我们还分析了潜在的竞争反应,重点是二氧化碳还原的电催化过程,并通过对氧化还原电势和吉布斯自由能的密度泛函理论计算,评估了 "质子化优先 "和 "还原优先 "的途径。分析表明,"还原优先 "途径在 CO 生成中占主导地位,尤其是在高电势条件下。此外,我们的研究还强调了[Mn(pyrox)(CO)3Br]对 CO 生成的选择性,而不是对 HCOO- 和 H2 生成的选择性,这为今后的研究提出了途径,即通过使用更大的基集和探索更多的功能化配体来扩展这些发现。
{"title":"Investigating CO2 electro-reduction mechanisms: DFT insight into earth-abundant Mn diimine catalysts for CO2 conversions over hydrogen evolution reaction, feasibility, and selectivity considerations","authors":"Murugesan Panneerselvam, Marcelo Albuquerque, Iuri Soter Viana Segtovich, Frederico W. Tavares, Luciano T. Costa","doi":"10.1007/s11705-024-2502-5","DOIUrl":"10.1007/s11705-024-2502-5","url":null,"abstract":"<div><p>This study investigates the detailed mechanism of CO<sub>2</sub> conversion to CO using the manganese(I) diimine electrocatalyst [Mn(pyrox)(CO)<sub>3</sub>Br], synthesized by Christoph Steinlechner and coworkers. Employing density functional theory calculations, we thoroughly explore the electrocatalytic pathway of CO<sub>2</sub> reduction alongside the competing hydrogen evolution reaction. Our analysis reveals the significant role of diimine nitrogen coordination in enhancing the electron density of the Mn center, thereby favoring both CO<sub>2</sub> reduction and hydrogen evolution reaction thermodynamically. Furthermore, we observe that triethanolamine (TEOA) stabilizes transition states, aiding in CO<sub>2</sub> fixation and reduction. The critical steps influencing the reaction rate involve breaking the MnC(O)–OH bond during CO<sub>2</sub> reduction and cleaving the MnH–H–TEOA bond in the hydrogen evolution reaction. We explain the preference for CO<sub>2</sub> conversion to CO over H<sub>2</sub> evolution due to the higher energy barrier in forming the Mn-H<sub>2</sub> species during H<sub>2</sub> production. Our findings suggest the potential for tuning the electron density of the Mn center to enhance reactivity and selectivity in CO<sub>2</sub> reduction. Additionally, we analyze potential competing reactions, focusing on electrocatalytic processes for CO<sub>2</sub> reduction and evaluating “protonation-first” and “reduction-first” pathways through density functional theory calculations of redox potentials and Gibbs free energies. This analysis indicates the predominance of the “reduction-first” pathway in CO production, especially under high applied potential conditions. Moreover, our research highlights the selectivity of [Mn(pyrox)(CO)<sub>3</sub>Br] toward CO production over HCOO<sup>−</sup> and H<sub>2</sub> formation, proposing avenues for future research to expand upon these findings by using larger basis sets and exploring additional functionalized ligands.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polyolefins, widely used for packaging, construction, and electronics, facilitate daily life but cause severe environmental pollution when discarded after usage. Chemical recycling of polyolefins has received widespread attention for eliminating polyolefin pollution, as it is promising to convert polyolefin wastes to high-value chemicals (e.g., fuels, light olefins, aromatic hydrocarbons). However, the chemical recycling of polyolefins typically involves high-viscosity, high-temperature and high-pressure, and its efficiency depends on the catalytic materials, reaction conditions, and more essentially, on the reactors which are overlooked in previous studies. Herein, this review first introduces the mechanisms and influencing factors of polyolefin waste upcycling, followed by a brief overview of in situ and ex situ processes. Emphatically, the review focuses on the various reactors used in polyolefin recycling (i.e., batch/semi-batch reactor, fixed bed reactor, fluidized bed reactor, conical spouted bed reactor, screw reactor, molten metal bed reactor, vertical falling film reactor, rotary kiln reactor and microwave-assisted reactor) and their respective merits and demerits. Nevertheless, challenges remain in developing highly efficient reacting techniques to realize the practical application. In light of this, the review is concluded with recommendations and prospects to enlighten the future of polyolefin upcycling.
{"title":"Chemical recycling of polyolefin waste: from the perspective of efficient pyrolysis reactors","authors":"Weiqiang Gao, Yinlong Chang, Qimin Zhou, Qingyue Wang, Khak Ho Lim, Deliang Wang, Jijiang Hu, Wen-Jun Wang, Bo-Geng Li, Pingwei Liu","doi":"10.1007/s11705-024-2498-x","DOIUrl":"10.1007/s11705-024-2498-x","url":null,"abstract":"<div><p>Polyolefins, widely used for packaging, construction, and electronics, facilitate daily life but cause severe environmental pollution when discarded after usage. Chemical recycling of polyolefins has received widespread attention for eliminating polyolefin pollution, as it is promising to convert polyolefin wastes to high-value chemicals (e.g., fuels, light olefins, aromatic hydrocarbons). However, the chemical recycling of polyolefins typically involves high-viscosity, high-temperature and high-pressure, and its efficiency depends on the catalytic materials, reaction conditions, and more essentially, on the reactors which are overlooked in previous studies. Herein, this review first introduces the mechanisms and influencing factors of polyolefin waste upcycling, followed by a brief overview of <i>in situ</i> and <i>ex situ</i> processes. Emphatically, the review focuses on the various reactors used in polyolefin recycling (i.e., batch/semi-batch reactor, fixed bed reactor, fluidized bed reactor, conical spouted bed reactor, screw reactor, molten metal bed reactor, vertical falling film reactor, rotary kiln reactor and microwave-assisted reactor) and their respective merits and demerits. Nevertheless, challenges remain in developing highly efficient reacting techniques to realize the practical application. In light of this, the review is concluded with recommendations and prospects to enlighten the future of polyolefin upcycling.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The oxygen vacancy formation energy and chemical looping dry reforming of methane over metal-substituted CeO2 (111) are investigated based on density functional theory calculations. The calculated results indicate that among the various metals that can substitute for the Ce atom in the CeO2(111) surface, Zn substitution results in the lowest oxygen vacancy formation energy. For the activation of CH4 on CeO2 (111) and Zn-substituted CeO2 (111) surfaces, the calculated results illustrate that the dissociation process of CH3(ads) is very difficult on pristine surfaces and unfavorable for CHO(ads) on substituted surfaces. Furthermore, the dissociative adsorption of CO and H2 on the Zn-substituted CeO2 (111) surface requires high energy, which is unfavorable for syngas production. This work demonstrates that excessive formation of oxygen vacancy can lead to excessively high adsorption energies, thus limiting the conversion efficiency of the reaction intermediates. This finding provides important guidance and application prospects for the design and optimization of oxygen carrier materials, especially in the field of chemical looping dry methane reforming to syngas.
{"title":"DFT insights into oxygen vacancy formation and chemical looping dry reforming of methane on metal-substituted CeO2 (111) surface","authors":"Mingyi Chen, Zeshan Wang, Yuelun Li, Yuxin Wang, Lei Jiang, Huicong Zuo, Linan Huang, Yuhao Wang, Dong Tian, Hua Wang, Kongzhai Li","doi":"10.1007/s11705-024-2513-2","DOIUrl":"10.1007/s11705-024-2513-2","url":null,"abstract":"<div><p>The oxygen vacancy formation energy and chemical looping dry reforming of methane over metal-substituted CeO<sub>2</sub> (111) are investigated based on density functional theory calculations. The calculated results indicate that among the various metals that can substitute for the Ce atom in the CeO<sub>2</sub>(111) surface, Zn substitution results in the lowest oxygen vacancy formation energy. For the activation of CH<sub>4</sub> on CeO<sub>2</sub> (111) and Zn-substituted CeO<sub>2</sub> (111) surfaces, the calculated results illustrate that the dissociation process of CH<sub>3(ads)</sub> is very difficult on pristine surfaces and unfavorable for CHO<sub>(ads)</sub> on substituted surfaces. Furthermore, the dissociative adsorption of CO and H<sub>2</sub> on the Zn-substituted CeO<sub>2</sub> (111) surface requires high energy, which is unfavorable for syngas production. This work demonstrates that excessive formation of oxygen vacancy can lead to excessively high adsorption energies, thus limiting the conversion efficiency of the reaction intermediates. This finding provides important guidance and application prospects for the design and optimization of oxygen carrier materials, especially in the field of chemical looping dry methane reforming to syngas.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1007/s11705-024-2500-7
Rohan Ali, Yifei Zhang
The trend of employing machine learning methods has been increasing to develop promising biocatalysts. Leveraging the experimental findings and simulation data, these methods facilitate enzyme engineering and even the design of new-to-nature enzymes. This review focuses on the application of machine learning methods in the engineering of polyethylene terephthalate (PET) hydrolases, enzymes that have the potential to help address plastic pollution. We introduce an overview of machine learning workflows, useful methods and tools for protein design and engineering, and discuss the recent progress of machine learning-aided PET hydrolase engineering and de novo design of PET hydrolases. Finally, as machine learning in enzyme engineering is still evolving, we foresee that advancements in computational power and quality data resources will considerably increase the use of data-driven approaches in enzyme engineering in the coming decades.
{"title":"Machine learning meets enzyme engineering: examples in the design of polyethylene terephthalate hydrolases","authors":"Rohan Ali, Yifei Zhang","doi":"10.1007/s11705-024-2500-7","DOIUrl":"10.1007/s11705-024-2500-7","url":null,"abstract":"<div><p>The trend of employing machine learning methods has been increasing to develop promising biocatalysts. Leveraging the experimental findings and simulation data, these methods facilitate enzyme engineering and even the design of new-to-nature enzymes. This review focuses on the application of machine learning methods in the engineering of polyethylene terephthalate (PET) hydrolases, enzymes that have the potential to help address plastic pollution. We introduce an overview of machine learning workflows, useful methods and tools for protein design and engineering, and discuss the recent progress of machine learning-aided PET hydrolase engineering and <i>de novo</i> design of PET hydrolases. Finally, as machine learning in enzyme engineering is still evolving, we foresee that advancements in computational power and quality data resources will considerably increase the use of data-driven approaches in enzyme engineering in the coming decades.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Investigating the thermal hysteresis and its effect on the kinetic behaviors and reaction model of vacuum residue pyrolysis is of significant importance in industry and scientific research. Effects of heating rate and heating transfer resistance on the pyrolysis process were examined with the thermogravimetric analysis. The kinetic characteristics of the vacuum residue pyrolysis were estimated using the iso-conversional method and integral master-plots method based on a three-stage reaction model through the deconvolution of Fraser-Suzuki function. Results showed that the reaction order models for the first and second stages were associated with the evaporation of vapor, while the nucleation and growth models for the third stage were linked to char formation. During the pyrolysis, the thermal hysteresis led to an increase in the reaction order in the first stage, which resulted in a delayed release of generated hydrocarbons due to high heating rate and enhanced heat transfer resistance. The reaction in the last stage primarily involved coking, where the presence of an inert solid acted as a nucleating agent, facilitating char formation and reducing the activation energy. The optimization results suggest that the obtained three-stage reaction model and kinetic triplets have the potential to effectively describe the active pyrolysis behavior of vacuum residue under high thermal hysteresis.
{"title":"Kinetic study of the effect of thermal hysteresis on pyrolysis of vacuum residue","authors":"Chao Wang, Xiaogang Shi, Aijun Duan, Xingying Lan, Jinsen Gao, Qingang Xiong","doi":"10.1007/s11705-024-2496-z","DOIUrl":"10.1007/s11705-024-2496-z","url":null,"abstract":"<div><p>Investigating the thermal hysteresis and its effect on the kinetic behaviors and reaction model of vacuum residue pyrolysis is of significant importance in industry and scientific research. Effects of heating rate and heating transfer resistance on the pyrolysis process were examined with the thermogravimetric analysis. The kinetic characteristics of the vacuum residue pyrolysis were estimated using the iso-conversional method and integral master-plots method based on a three-stage reaction model through the deconvolution of Fraser-Suzuki function. Results showed that the reaction order models for the first and second stages were associated with the evaporation of vapor, while the nucleation and growth models for the third stage were linked to char formation. During the pyrolysis, the thermal hysteresis led to an increase in the reaction order in the first stage, which resulted in a delayed release of generated hydrocarbons due to high heating rate and enhanced heat transfer resistance. The reaction in the last stage primarily involved coking, where the presence of an inert solid acted as a nucleating agent, facilitating char formation and reducing the activation energy. The optimization results suggest that the obtained three-stage reaction model and kinetic triplets have the potential to effectively describe the active pyrolysis behavior of vacuum residue under high thermal hysteresis.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1007/s11705-024-2499-9
Yong-Shan Xiao, Min-Li Zhu, Han-Qing Ge, Zhong-Wen Liu
The loading-dispersion-reducibility dependence has always been one of the most critical issues in the development of high-performance supported metal catalysts. Herein, up to 40 wt % NiO over ordered mesoporous alumina (OMA) was prepared by co-grinding the hybrid of template-containing OMA and Ni(NO3)2·6H2O. Characterization results confirmed that the OMA mesostructure was still preserved even after loading NiO at a content as high as 40 wt %. More importantly, the reduction extent, dispersion, and average particle size of the Ni/OMA catalysts were maintained at ⩾ 91.0%, ∼13.5%, and ∼4.0–5.0 nm, respectively, when the NiO loading was increased from 20 to 40 wt %. The catalysts were evaluated for the CO methanation as a model reaction, and the similarly high turnover frequency of 24.0 h−1 was achieved at 300 °C for all of the Ni/OMA catalysts. For the catalyst with the highest NiO loading of 40 wt % (40Ni/OMA), the low-temperature activity at 300 °C indexed by the space-time yield of methane (over (325.8 text{mol}_{text{CH}_{4}}cdot {text{kg}_{text{cat}}}^{-1}cdot mathrm{h}^{-1})) was achieved, while the catalyst was operated without an observable deactivation for a time on stream of 120 h under severe reaction conditions of 600 °C and a very high gas hourly space velocity of 240000 mL·g−1·h−1. With these significant results, this work paves the way for a rational and controllable design of supported Ni catalysts by breaking the loading-dispersion-reducibility dependence and stabilizing Ni nanoparticles under harsh reaction conditions.
{"title":"Breaking the Ni loading-reducibility-dispersion dependence achieved by solid-state co-grinding","authors":"Yong-Shan Xiao, Min-Li Zhu, Han-Qing Ge, Zhong-Wen Liu","doi":"10.1007/s11705-024-2499-9","DOIUrl":"10.1007/s11705-024-2499-9","url":null,"abstract":"<div><p>The loading-dispersion-reducibility dependence has always been one of the most critical issues in the development of high-performance supported metal catalysts. Herein, up to 40 wt % NiO over ordered mesoporous alumina (OMA) was prepared by co-grinding the hybrid of template-containing OMA and Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O. Characterization results confirmed that the OMA mesostructure was still preserved even after loading NiO at a content as high as 40 wt %. More importantly, the reduction extent, dispersion, and average particle size of the Ni/OMA catalysts were maintained at ⩾ 91.0%, ∼13.5%, and ∼4.0–5.0 nm, respectively, when the NiO loading was increased from 20 to 40 wt %. The catalysts were evaluated for the CO methanation as a model reaction, and the similarly high turnover frequency of 24.0 h<sup>−1</sup> was achieved at 300 °C for all of the Ni/OMA catalysts. For the catalyst with the highest NiO loading of 40 wt % (40Ni/OMA), the low-temperature activity at 300 °C indexed by the space-time yield of methane (over <span>(325.8 text{mol}_{text{CH}_{4}}cdot {text{kg}_{text{cat}}}^{-1}cdot mathrm{h}^{-1})</span>) was achieved, while the catalyst was operated without an observable deactivation for a time on stream of 120 h under severe reaction conditions of 600 °C and a very high gas hourly space velocity of 240000 mL·g<sup>−1</sup>·h<sup>−1</sup>. With these significant results, this work paves the way for a rational and controllable design of supported Ni catalysts by breaking the loading-dispersion-reducibility dependence and stabilizing Ni nanoparticles under harsh reaction conditions.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1007/s11705-024-2497-y
Yue-Rong Zhang, Zhen Qin, Song Gu, Jia-Xin Zhao, Xian-Yue Xiang, Chuan Liu, Yu-Zhong Wang, Li Chen
To date, sustainable thermosetting polymers and their composites have emerged to address recyclability issues. However, achieving mild degradation of these polymers compromises their comprehensive properties such as flame retardancy and glass transition temperature (Tg). Moreover, the reuse of degradation products after recycling for upcycling remains a significant challenge. This study introduces phosphorus-containing anhydride into tetraglycidyl methylene diphenylamine via a facile anhydride-epoxy curing equilibrium with triethanolamine as a transesterification modifier to successfully prepare flame-retardant, malleable, reprocessable, and easily hydrothermally degradable epoxy vitrimers and recyclable carbon fiber-reinforced epoxy composites (CFRECs). The composite exhibited excellent flame retardancy and a high Tg of 192 °C, while the presence of stoichiometric primary hydroxyl groups along the ester-bonding crosslinks enabled environmentally friendly degradation (in H2O) at 200 °C without any external catalyst. Under mild degradation conditions, the fibers of the composite material were successfully recycled without being damaged, and the degradation products were reused to create a recyclable adhesive with a peel strength of 3.5 MPa. This work presents a method to produce flame retardants and sustainable CFRECs for maximizing the value of degradation products, offering a new upcycling method for high-end applications.
{"title":"Flame-retardant, recyclable, and hydrothermally degradable epoxy resins and their degradation products for high-strength adhesives","authors":"Yue-Rong Zhang, Zhen Qin, Song Gu, Jia-Xin Zhao, Xian-Yue Xiang, Chuan Liu, Yu-Zhong Wang, Li Chen","doi":"10.1007/s11705-024-2497-y","DOIUrl":"10.1007/s11705-024-2497-y","url":null,"abstract":"<div><p>To date, sustainable thermosetting polymers and their composites have emerged to address recyclability issues. However, achieving mild degradation of these polymers compromises their comprehensive properties such as flame retardancy and glass transition temperature (<i>T</i><sub>g</sub>). Moreover, the reuse of degradation products after recycling for upcycling remains a significant challenge. This study introduces phosphorus-containing anhydride into tetraglycidyl methylene diphenylamine via a facile anhydride-epoxy curing equilibrium with triethanolamine as a transesterification modifier to successfully prepare flame-retardant, malleable, reprocessable, and easily hydrothermally degradable epoxy vitrimers and recyclable carbon fiber-reinforced epoxy composites (CFRECs). The composite exhibited excellent flame retardancy and a high <i>T</i><sub>g</sub> of 192 °C, while the presence of stoichiometric primary hydroxyl groups along the ester-bonding crosslinks enabled environmentally friendly degradation (in H<sub>2</sub>O) at 200 °C without any external catalyst. Under mild degradation conditions, the fibers of the composite material were successfully recycled without being damaged, and the degradation products were reused to create a recyclable adhesive with a peel strength of 3.5 MPa. This work presents a method to produce flame retardants and sustainable CFRECs for maximizing the value of degradation products, offering a new upcycling method for high-end applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-30DOI: 10.1007/s11705-024-2495-0
Wei Wang, Xiangli Long, Liping Pang, Dawei Shen, Qing Wang
Paper-based separator for lithium-ion battery application has attracted great attention due to its good electrolyte affinity and thermal stability. To avoid the short circuit by the micron-sized pores of paper and improve the electrochemical properties of paper-based separator, cellulose fibers were acetylated followed by wet papermaking and metal-organic framework coating. Due to the strong intermolecular interaction between acetylated cellulose fibers and N,N-dimethylformamide, the resulting separator exhibited compact microstructure. The zeolitic imidazolate framework-8 coating endowed the separator with enhanced electrolyte affinity (electrolyte contact angle of 0°), ionic conductivity (1.26 mS·cm−1), interfacial compatibility (284 Ω), lithium ion transfer number (0.61) and electrochemical stability window (4.96 V). The assembled LiFePO4/Li battery displayed an initial discharge capacity of 146.10 mAh·g−1 at 0.5 C with capacity retention of 99.71% after 100 cycles and good rate performance. Our proposed strategy would provide a novel perspective for the design of high-performance paper-based separators for battery applications.
{"title":"Improving the performance of paper-based separator for lithium-ion batteries application by cellulose fiber acetylation and metal-organic framework coating","authors":"Wei Wang, Xiangli Long, Liping Pang, Dawei Shen, Qing Wang","doi":"10.1007/s11705-024-2495-0","DOIUrl":"10.1007/s11705-024-2495-0","url":null,"abstract":"<div><p>Paper-based separator for lithium-ion battery application has attracted great attention due to its good electrolyte affinity and thermal stability. To avoid the short circuit by the micron-sized pores of paper and improve the electrochemical properties of paper-based separator, cellulose fibers were acetylated followed by wet papermaking and metal-organic framework coating. Due to the strong intermolecular interaction between acetylated cellulose fibers and <i>N,N</i>-dimethylformamide, the resulting separator exhibited compact microstructure. The zeolitic imidazolate framework-8 coating endowed the separator with enhanced electrolyte affinity (electrolyte contact angle of 0°), ionic conductivity (1.26 mS·cm<sup>−1</sup>), interfacial compatibility (284 Ω), lithium ion transfer number (0.61) and electrochemical stability window (4.96 V). The assembled LiFePO<sub>4</sub>/Li battery displayed an initial discharge capacity of 146.10 mAh·g<sup>−1</sup> at 0.5 C with capacity retention of 99.71% after 100 cycles and good rate performance. Our proposed strategy would provide a novel perspective for the design of high-performance paper-based separators for battery applications.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}