Rahul Kumar , N.S. Magesh , Vivek Kumar , Kirti Ranjan Das , Ariz Ahmad , Vikas Singh , Partha Sarathi Majhi , Ravi Mishra , Anand K. Singh , Shailendra Saini , Yogesh Ray
{"title":"Performance monitoring of the wastewater system of Bharati Station, Antarctica","authors":"Rahul Kumar , N.S. Magesh , Vivek Kumar , Kirti Ranjan Das , Ariz Ahmad , Vikas Singh , Partha Sarathi Majhi , Ravi Mishra , Anand K. Singh , Shailendra Saini , Yogesh Ray","doi":"10.1016/j.polar.2024.101067","DOIUrl":null,"url":null,"abstract":"<div><p>The untouched condition of Antarctica's environment is a result of its inherent absence of human activity. Nevertheless, with the introduction of scientific research stations and human presence, a considerable volume of wastewater has been produced by these research facilities. The wastewater needs to be treated before discharge and has strict rules and regulations set by the Antarctic Treaty (Annexure III). However, the performance of the wastewater treatment plant and the data on the quality of the effluents being discharged into the sea by different stations are limited. In this study, the performance of the wastewater treatment plant at Bharati research station located at Larsemann Hills, East Antarctica was investigated from 2015 to 2022. Physical and chemical parameters such as pH, EC, NH<sub>4</sub>–N and COD were determined in effluents from the drinking water plant, blackwater and greywater plant from Bharati station. The pH and EC of the effluents were measured using portable probes, ammonia was measured spectrophotometrically, and COD was measured using the closed reflux digestion method. The monthly data of the effluents from 2015 to 2022 for pH, EC, NH<sub>4</sub>–N and COD indicate values within the permissible limits except for a few parameters at a certain time frame. It was observed that the pH of black, grey and drinking water varied between pH 6.5 and 9.1. Both grey and blackwater showed a decreasing conductivity trend, suggesting decreased ionic content. The blackwater exhibited an increase in ammonia concentration and COD trend, indicating higher organic pollution levels, while the grey water displayed a decreasing trend in COD, indicating a reduction in organic matter content. The study also investigated the correlation between NH<sub>4</sub>–N concentration in wastewater and greywater with levels of COD and compared these levels with standard values to assess effluent water quality. The data will provide baseline values to assess any malfunctioning of the wastewater system in treating the contaminants. Effluent data from other Antarctic stations show a high value compared with the effluents from Bharati station. Such variability largely depends on the station size, water usage and number of expedition members during the summer and winter seasons.</p></div>","PeriodicalId":20316,"journal":{"name":"Polar Science","volume":"40 ","pages":"Article 101067"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873965224000367","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The untouched condition of Antarctica's environment is a result of its inherent absence of human activity. Nevertheless, with the introduction of scientific research stations and human presence, a considerable volume of wastewater has been produced by these research facilities. The wastewater needs to be treated before discharge and has strict rules and regulations set by the Antarctic Treaty (Annexure III). However, the performance of the wastewater treatment plant and the data on the quality of the effluents being discharged into the sea by different stations are limited. In this study, the performance of the wastewater treatment plant at Bharati research station located at Larsemann Hills, East Antarctica was investigated from 2015 to 2022. Physical and chemical parameters such as pH, EC, NH4–N and COD were determined in effluents from the drinking water plant, blackwater and greywater plant from Bharati station. The pH and EC of the effluents were measured using portable probes, ammonia was measured spectrophotometrically, and COD was measured using the closed reflux digestion method. The monthly data of the effluents from 2015 to 2022 for pH, EC, NH4–N and COD indicate values within the permissible limits except for a few parameters at a certain time frame. It was observed that the pH of black, grey and drinking water varied between pH 6.5 and 9.1. Both grey and blackwater showed a decreasing conductivity trend, suggesting decreased ionic content. The blackwater exhibited an increase in ammonia concentration and COD trend, indicating higher organic pollution levels, while the grey water displayed a decreasing trend in COD, indicating a reduction in organic matter content. The study also investigated the correlation between NH4–N concentration in wastewater and greywater with levels of COD and compared these levels with standard values to assess effluent water quality. The data will provide baseline values to assess any malfunctioning of the wastewater system in treating the contaminants. Effluent data from other Antarctic stations show a high value compared with the effluents from Bharati station. Such variability largely depends on the station size, water usage and number of expedition members during the summer and winter seasons.
期刊介绍:
Polar Science is an international, peer-reviewed quarterly journal. It is dedicated to publishing original research articles for sciences relating to the polar regions of the Earth and other planets. Polar Science aims to cover 15 disciplines which are listed below; they cover most aspects of physical sciences, geosciences and life sciences, together with engineering and social sciences. Articles should attract the interest of broad polar science communities, and not be limited to the interests of those who work under specific research subjects. Polar Science also has an Open Archive whereby published articles are made freely available from ScienceDirect after an embargo period of 24 months from the date of publication.
- Space and upper atmosphere physics
- Atmospheric science/climatology
- Glaciology
- Oceanography/sea ice studies
- Geology/petrology
- Solid earth geophysics/seismology
- Marine Earth science
- Geomorphology/Cenozoic-Quaternary geology
- Meteoritics
- Terrestrial biology
- Marine biology
- Animal ecology
- Environment
- Polar Engineering
- Humanities and social sciences.