Using ICON Satellite Data to Forecast Equatorial Ionospheric Instability Throughout 2022

IF 3.7 2区 地球科学 Space Weather Pub Date : 2024-03-14 DOI:10.1029/2023sw003817
D. L. Hysell, A. Kirchman, B. J. Harding, R. A. Heelis, S. L. England, H. U. Frey, S. B. Mende
{"title":"Using ICON Satellite Data to Forecast Equatorial Ionospheric Instability Throughout 2022","authors":"D. L. Hysell, A. Kirchman, B. J. Harding, R. A. Heelis, S. L. England, H. U. Frey, S. B. Mende","doi":"10.1029/2023sw003817","DOIUrl":null,"url":null,"abstract":"Numerical forecasts of plasma convective instability in the postsunset equatorial ionosphere are made based on data from the Ionospheric Connections Explorer satellite (ICON) following the method outlined in a previous study. Data are selected from pairs of successive orbits. Data from the first orbit in the pair are used to initialize and force a numerical forecast simulation, and data from the second orbit are used to validate the results 104 min later. Data from the IVM plasma density and drifts instrument and the MIGHTI red-line thermospheric winds instrument are used to force the forecast model. Thirteen (16) data set pairs from August (October), 2022, are considered. Forecasts produced one false negative in August and another false negative in October. Possible causes of forecast discrepancies are evaluated including the failure to initialize the numerical simulations with electron density profiles measured concurrently. Volume emission 135.6-nm OI profiles from the Far Ultraviolet (FUV) instrument on ICON are considered in the evaluation.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"18 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023sw003817","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical forecasts of plasma convective instability in the postsunset equatorial ionosphere are made based on data from the Ionospheric Connections Explorer satellite (ICON) following the method outlined in a previous study. Data are selected from pairs of successive orbits. Data from the first orbit in the pair are used to initialize and force a numerical forecast simulation, and data from the second orbit are used to validate the results 104 min later. Data from the IVM plasma density and drifts instrument and the MIGHTI red-line thermospheric winds instrument are used to force the forecast model. Thirteen (16) data set pairs from August (October), 2022, are considered. Forecasts produced one false negative in August and another false negative in October. Possible causes of forecast discrepancies are evaluated including the failure to initialize the numerical simulations with electron density profiles measured concurrently. Volume emission 135.6-nm OI profiles from the Far Ultraviolet (FUV) instrument on ICON are considered in the evaluation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 ICON 卫星数据预测 2022 年全年赤道电离层不稳定性
根据电离层连接探测器卫星(ICON)的数据,按照先前研究中概述的方法,对日落后赤道电离层的等离子体对流不稳定性进行了数值预测。数据选自成对的连续轨道。成对轨道中第一个轨道的数据用于初始化和强制数值预报模拟,第二个轨道的数据用于 104 分钟后验证结果。来自 IVM 等离子体密度和漂移仪器以及 MIGHTI 红线热层风仪器的数据被用于强制预报模型。考虑了 2022 年 8 月(10 月)的十三(16)对数据集。预测结果在 8 月和 10 月分别产生了一个假负值和另一个假负值。评估了造成预报偏差的可能原因,包括未能根据同时测量的电子密度剖面进行数值模拟初始化。评估中考虑了 ICON 远紫外(FUV)仪器的 135.6 纳米 OI 体积发射剖面图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
29.70%
发文量
166
期刊最新文献
Quantification of Representation Error in the Neutral Winds and Ion Drifts Using Data Assimilation A Novel Ionospheric Inversion Model: PINN-SAMI3 (Physics Informed Neural Network Based on SAMI3) Nowcasting Solar EUV Irradiance With Photospheric Magnetic Fields and the Mg II Index Calculating the High-Latitude Ionospheric Electrodynamics Using a Machine Learning-Based Field-Aligned Current Model Effects of Forbush Decreases on the Global Electric Circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1