{"title":"CHL-DTI: A Novel High-Low Order Information Convergence Framework for Effective Drug-Target Interaction Prediction.","authors":"Shudong Wang, Yingye Liu, Yuanyuan Zhang, Kuijie Zhang, Xuanmo Song, Yu Zhang, Shanchen Pang","doi":"10.1007/s12539-024-00608-z","DOIUrl":null,"url":null,"abstract":"<p><p>Recognizing drug-target interactions (DTI) stands as a pivotal element in the expansive field of drug discovery. Traditional biological wet experiments, although valuable, are time-consuming and costly as methods. Recently, computational methods grounded in network learning have demonstrated great advantages by effective topological feature extraction and attracted extensive research attention. However, most existing network-based learning methods only consider the low-order binary correlation between individual drug and target, neglecting the potential higher-order correlation information derived from multiple drugs and targets. High-order information, as an essential component, exhibits complementarity with low-order information. Hence, the incorporation of higher-order associations between drugs and targets, while adequately integrating them with the existing lower-order information, could potentially yield substantial breakthroughs in predicting drug-target interactions. We propose a novel dual channels network-based learning model CHL-DTI that converges high-order information from hypergraphs and low-order information from ordinary graph for drug-target interaction prediction. The convergence of high-low order information in CHL-DTI is manifested in two key aspects. First, during the feature extraction stage, the model integrates both high-level semantic information and low-level topological information by combining hypergraphs and ordinary graph. Second, CHL-DTI fully fuse the innovative introduced drug-protein pairs (DPP) hypergraph network structure with ordinary topological network structure information. Extensive experimentation conducted on three public datasets showcases the superior performance of CHL-DTI in DTI prediction tasks when compared to SOTA methods. The source code of CHL-DTI is available at https://github.com/UPCLyy/CHL-DTI .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"568-578"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00608-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recognizing drug-target interactions (DTI) stands as a pivotal element in the expansive field of drug discovery. Traditional biological wet experiments, although valuable, are time-consuming and costly as methods. Recently, computational methods grounded in network learning have demonstrated great advantages by effective topological feature extraction and attracted extensive research attention. However, most existing network-based learning methods only consider the low-order binary correlation between individual drug and target, neglecting the potential higher-order correlation information derived from multiple drugs and targets. High-order information, as an essential component, exhibits complementarity with low-order information. Hence, the incorporation of higher-order associations between drugs and targets, while adequately integrating them with the existing lower-order information, could potentially yield substantial breakthroughs in predicting drug-target interactions. We propose a novel dual channels network-based learning model CHL-DTI that converges high-order information from hypergraphs and low-order information from ordinary graph for drug-target interaction prediction. The convergence of high-low order information in CHL-DTI is manifested in two key aspects. First, during the feature extraction stage, the model integrates both high-level semantic information and low-level topological information by combining hypergraphs and ordinary graph. Second, CHL-DTI fully fuse the innovative introduced drug-protein pairs (DPP) hypergraph network structure with ordinary topological network structure information. Extensive experimentation conducted on three public datasets showcases the superior performance of CHL-DTI in DTI prediction tasks when compared to SOTA methods. The source code of CHL-DTI is available at https://github.com/UPCLyy/CHL-DTI .
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.