Francesca Amici, Christian Ciarlo, Jenine Abumusallam, Madeline Kravitz, Angel-Rose Weber, Hanna Meister, Zhao Li
{"title":"Protecting cardiomyocytes from hypoxia-reoxygenation injury, empaglifozin and liraglutide alone or in combination?","authors":"Francesca Amici, Christian Ciarlo, Jenine Abumusallam, Madeline Kravitz, Angel-Rose Weber, Hanna Meister, Zhao Li","doi":"10.1515/jbcpp-2023-0029","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Empagliflozin, a sodium-dependent glucose co-transporter 2 (SGLT2) inhibitor, and liraglutide, a GLP-1 receptor (GLP-1R) agonist, are commonly recognized for their cardiovascular benefits in individuals with type 2 diabetes (T2D). In prior studies, we have demonstrated that both drugs, alone or in combination, were able to protect cardiomyocytes from injury induced by diabetes. Mechanistic investigations also suggested that the cardioprotective effect may be independent of diabetes In this study, we utilized a hypoxia-reoxygenation (H/R) model to investigate the cardiovascular benefits of SGLT2 inhibitor empagliflozin and GLP-1 receptor (GLP-1R) agonist liraglutide, both alone and in combination, in the absence of T2D. Our hypothesis was that empagliflozin and liraglutide, either individually or in combination, would demonstrate cardioprotective properties against H/R-induced injury, with an additive and/or synergistic effect anticipated from combination therapy.</p><p><strong>Methods: </strong>In this study, the cardiac muscle cell line, HL-1 cells, were treated with vehicle, empagliflozin, liraglutide, or a combination of the two drugs. The cells were then subjected to a hypoxia-reoxygenation (H/R) protocol, consisting of 1 h of hypoxia followed by 24 h of reoxygenation. The effects of the treatments on cytotoxicity, oxidative stress, endothelial nitric oxide synthase (eNOS) activity, phospho-protein kinase C (PKC) beta and phospho-eNOS (Thr<sup>495</sup>) expression were subsequently evaluated at the end of the treatments.</p><p><strong>Results: </strong>We found that H/R increased cytotoxicity and reduces eNOS activity, empagliflozin, liraglutide or combination treatment attenuated some or all of these effects with the combination therapy showing the greatest improvement.</p><p><strong>Conclusions: </strong>Empagliflozin, liraglutide or combination of these two have cardioprotective effect regardless of diabetes. Cardioprotective effects of SGLT2 inhibitor and GLP-1R agonist is additive and synergistic.</p>","PeriodicalId":15352,"journal":{"name":"Journal of Basic and Clinical Physiology and Pharmacology","volume":" ","pages":"53-60"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic and Clinical Physiology and Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jbcpp-2023-0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Empagliflozin, a sodium-dependent glucose co-transporter 2 (SGLT2) inhibitor, and liraglutide, a GLP-1 receptor (GLP-1R) agonist, are commonly recognized for their cardiovascular benefits in individuals with type 2 diabetes (T2D). In prior studies, we have demonstrated that both drugs, alone or in combination, were able to protect cardiomyocytes from injury induced by diabetes. Mechanistic investigations also suggested that the cardioprotective effect may be independent of diabetes In this study, we utilized a hypoxia-reoxygenation (H/R) model to investigate the cardiovascular benefits of SGLT2 inhibitor empagliflozin and GLP-1 receptor (GLP-1R) agonist liraglutide, both alone and in combination, in the absence of T2D. Our hypothesis was that empagliflozin and liraglutide, either individually or in combination, would demonstrate cardioprotective properties against H/R-induced injury, with an additive and/or synergistic effect anticipated from combination therapy.
Methods: In this study, the cardiac muscle cell line, HL-1 cells, were treated with vehicle, empagliflozin, liraglutide, or a combination of the two drugs. The cells were then subjected to a hypoxia-reoxygenation (H/R) protocol, consisting of 1 h of hypoxia followed by 24 h of reoxygenation. The effects of the treatments on cytotoxicity, oxidative stress, endothelial nitric oxide synthase (eNOS) activity, phospho-protein kinase C (PKC) beta and phospho-eNOS (Thr495) expression were subsequently evaluated at the end of the treatments.
Results: We found that H/R increased cytotoxicity and reduces eNOS activity, empagliflozin, liraglutide or combination treatment attenuated some or all of these effects with the combination therapy showing the greatest improvement.
Conclusions: Empagliflozin, liraglutide or combination of these two have cardioprotective effect regardless of diabetes. Cardioprotective effects of SGLT2 inhibitor and GLP-1R agonist is additive and synergistic.
期刊介绍:
The Journal of Basic and Clinical Physiology and Pharmacology (JBCPP) is a peer-reviewed bi-monthly published journal in experimental medicine. JBCPP publishes novel research in the physiological and pharmacological sciences, including brain research; cardiovascular-pulmonary interactions; exercise; thermal control; haematology; immune response; inflammation; metabolism; oxidative stress; and phytotherapy. As the borders between physiology, pharmacology and biochemistry become increasingly blurred, we also welcome papers using cutting-edge techniques in cellular and/or molecular biology to link descriptive or behavioral studies with cellular and molecular mechanisms underlying the integrative processes. Topics: Behavior and Neuroprotection, Reproduction, Genotoxicity and Cytotoxicity, Vascular Conditions, Cardiovascular Function, Cardiovascular-Pulmonary Interactions, Oxidative Stress, Metabolism, Immune Response, Hematological Profile, Inflammation, Infection, Phytotherapy.