Immunosuppressive Cyclotides: A Promising Approach for Treating Autoimmune Diseases

IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY The Protein Journal Pub Date : 2024-03-15 DOI:10.1007/s10930-024-10188-y
Nguyen Thai Huynh, Thao N.T Ho, Yen N.D. Pham, Le Hang Dang, Son H. Pham, Tien T. Dang
{"title":"Immunosuppressive Cyclotides: A Promising Approach for Treating Autoimmune Diseases","authors":"Nguyen Thai Huynh,&nbsp;Thao N.T Ho,&nbsp;Yen N.D. Pham,&nbsp;Le Hang Dang,&nbsp;Son H. Pham,&nbsp;Tien T. Dang","doi":"10.1007/s10930-024-10188-y","DOIUrl":null,"url":null,"abstract":"<div><p>The immune system maintains constant surveillance to prevent the infiltration of both endogenous and exogenous threats into host organisms. The process is regulated by effector immune cells that combat external pathogens and regulatory immune cells that inhibit excessive internal body inflammation, ultimately establishing a state of homeostasis within the body. Disruption to this process could lead to autoimmunity, which is often associated with the malfunction of both T cells and B cells with T cells playing a more major role. A number of therapeutic mediators for autoimmune diseases are available, from conventional disease-modifying drugs to biologic agents and small molecule inhibitors. Recently, ribosomally synthesized peptides, specifically cyclotides from plants are currently attracting more attention as potential autoimmune disease therapeutics due to their decreased toxicity compared to small molecules inhibitors as well as their remarkable stability against a number of factors. This review provides a concise overview of various cyclotides exhibiting immunomodulatory properties and their potential as therapeutic interventions for autoimmune diseases.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":"43 2","pages":"159 - 170"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Protein Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s10930-024-10188-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The immune system maintains constant surveillance to prevent the infiltration of both endogenous and exogenous threats into host organisms. The process is regulated by effector immune cells that combat external pathogens and regulatory immune cells that inhibit excessive internal body inflammation, ultimately establishing a state of homeostasis within the body. Disruption to this process could lead to autoimmunity, which is often associated with the malfunction of both T cells and B cells with T cells playing a more major role. A number of therapeutic mediators for autoimmune diseases are available, from conventional disease-modifying drugs to biologic agents and small molecule inhibitors. Recently, ribosomally synthesized peptides, specifically cyclotides from plants are currently attracting more attention as potential autoimmune disease therapeutics due to their decreased toxicity compared to small molecules inhibitors as well as their remarkable stability against a number of factors. This review provides a concise overview of various cyclotides exhibiting immunomodulatory properties and their potential as therapeutic interventions for autoimmune diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
免疫抑制环素:治疗自身免疫性疾病的前景看好的方法。
免疫系统保持持续监控,以防止内源性和外源性威胁渗入宿主机体。这一过程由对抗外部病原体的效应免疫细胞和抑制身体内部过度炎症的调节免疫细胞调节,最终在体内建立起一种平衡状态。这一过程的破坏会导致自身免疫,而自身免疫通常与 T 细胞和 B 细胞的功能失常有关,其中 T 细胞的作用更大。目前有许多治疗自身免疫疾病的介质,从传统的疾病调节药物到生物制剂和小分子抑制剂。最近,核糖体合成的多肽,特别是来自植物的环肽,作为潜在的自身免疫性疾病治疗药物受到越来越多的关注,这是因为与小分子抑制剂相比,它们的毒性更低,而且对多种因素具有显著的稳定性。本综述简要概述了具有免疫调节特性的各种环肽及其作为自身免疫疾病治疗干预措施的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Protein Journal
The Protein Journal 生物-生化与分子生物学
CiteScore
5.20
自引率
0.00%
发文量
57
审稿时长
12 months
期刊介绍: The Protein Journal (formerly the Journal of Protein Chemistry) publishes original research work on all aspects of proteins and peptides. These include studies concerned with covalent or three-dimensional structure determination (X-ray, NMR, cryoEM, EPR/ESR, optical methods, etc.), computational aspects of protein structure and function, protein folding and misfolding, assembly, genetics, evolution, proteomics, molecular biology, protein engineering, protein nanotechnology, protein purification and analysis and peptide synthesis, as well as the elucidation and interpretation of the molecular bases of biological activities of proteins and peptides. We accept original research papers, reviews, mini-reviews, hypotheses, opinion papers, and letters to the editor.
期刊最新文献
Influence of Cataract Causing Mutations on αA-Crystallin: A Computational Approach Unraveling the interaction between a glycolytic regulator protein EhPpdk and an anaphase promoting complex protein EhApc10: yeast two hybrid screening, in vitro binding assays and molecular simulation study Unravelling the Significance of Seed Proteomics: Insights into Seed Development, Function, and Agricultural Applications HaloClass: Salt-Tolerant Protein Classification with Protein Language Models Exosomes with Engineered Brain Derived Neurotrophic Factor on Their Surfaces Can Proliferate Menstrual Blood Derived Mesenchymal Stem Cells: Targeted Delivery for a Protein Drug
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1