{"title":"An energy-efficient tunable threshold spiking neuron with excitatory and inhibitory function","authors":"Mudasir A. Khanday, Farooq A. Khanday","doi":"10.1002/jnm.3227","DOIUrl":null,"url":null,"abstract":"<p>In this work, a complementary metal-oxide-semiconductor (CMOS) based leaky-integrate and fire neuron has been proposed and investigated for neuromorphic applications. The neuron has been designed in Cadence Virtuoso and validated experimentally. It has been observed that the neuron consumes a maximum energy of 68.87 fJ/spike. The response of the neuron to excitatory as well as inhibitory inputs has been studied. To verify the applicability, the proposed neuron has been explored for reconfigurable threshold logic to implement various linearly separable Boolean functions including OR, AND, NOT, NOR, and NAND. Moreover, the threshold tunability of the neuron has also been verified and this property has been exploited to design threshold-controlled logic gates. Instead of adjusting the weights of the applied inputs, the functionality of such gates can be controlled by changing the threshold of the neuron, simplifying the synaptic architecture of a neural network. Finally, a multilayer network has been designed and the recognition ability of the proposed network for MNIST handwritten digits has been verified with an accuracy of 96.93%.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3227","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a complementary metal-oxide-semiconductor (CMOS) based leaky-integrate and fire neuron has been proposed and investigated for neuromorphic applications. The neuron has been designed in Cadence Virtuoso and validated experimentally. It has been observed that the neuron consumes a maximum energy of 68.87 fJ/spike. The response of the neuron to excitatory as well as inhibitory inputs has been studied. To verify the applicability, the proposed neuron has been explored for reconfigurable threshold logic to implement various linearly separable Boolean functions including OR, AND, NOT, NOR, and NAND. Moreover, the threshold tunability of the neuron has also been verified and this property has been exploited to design threshold-controlled logic gates. Instead of adjusting the weights of the applied inputs, the functionality of such gates can be controlled by changing the threshold of the neuron, simplifying the synaptic architecture of a neural network. Finally, a multilayer network has been designed and the recognition ability of the proposed network for MNIST handwritten digits has been verified with an accuracy of 96.93%.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.