{"title":"A MPM Lagrangian-Eulerian hydrocode for simulating buried explosions in transversely isotropic geomaterials","authors":"Mian Xiao, WaiChing Sun","doi":"10.1002/nag.3717","DOIUrl":null,"url":null,"abstract":"<p>Shock waves in geological materials are characterized by a sudden release of rapidly expanding gas, liquid, and solid particles. These shock waves may occur due to explosive volcanic eruptions or be artificially triggered. In fact, underground explosions have often been used as an engineering solution for large-scale excavation, stimulating oil and gas recovery, creating cavities for underground waste storage, and even extinguishing gas field fires. As such, hydrocodes capable of simulating the rapid and significant deformation under extreme conditions can be a valuable tool for ensuring the safety of the explosions. Nevertheless, as most of the hydrocodes are often formulated in an Eulerian grid, this setting makes it non-trivial to track the deformation configuration of the materials without a level set. The objective of this paper is to propose the use of the material point method equipped with appropriate equation of state (EOS) models as a hydrocode suitable to simulate underground explosions of transverse isotropic geomaterials. To capture the anisotropic effect of the common layered soil deposits, we introduce a new MPM hydrocode where an anisotropic version of the Mie-Gruneisen EOS is coupled with a frictional Drucker-Prager plasticity model to replicate the high-strain-rate constitutive responses of soil. By leveraging the Lagrangian nature of material points to capture the historical dependence and the Eulerian calculation of internal force, the resultant model is capable of simulating the rapid evolution of geometry of the soil as well as the high-strain-rate soil mechanics of anisotropic materials.</p>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3717","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Shock waves in geological materials are characterized by a sudden release of rapidly expanding gas, liquid, and solid particles. These shock waves may occur due to explosive volcanic eruptions or be artificially triggered. In fact, underground explosions have often been used as an engineering solution for large-scale excavation, stimulating oil and gas recovery, creating cavities for underground waste storage, and even extinguishing gas field fires. As such, hydrocodes capable of simulating the rapid and significant deformation under extreme conditions can be a valuable tool for ensuring the safety of the explosions. Nevertheless, as most of the hydrocodes are often formulated in an Eulerian grid, this setting makes it non-trivial to track the deformation configuration of the materials without a level set. The objective of this paper is to propose the use of the material point method equipped with appropriate equation of state (EOS) models as a hydrocode suitable to simulate underground explosions of transverse isotropic geomaterials. To capture the anisotropic effect of the common layered soil deposits, we introduce a new MPM hydrocode where an anisotropic version of the Mie-Gruneisen EOS is coupled with a frictional Drucker-Prager plasticity model to replicate the high-strain-rate constitutive responses of soil. By leveraging the Lagrangian nature of material points to capture the historical dependence and the Eulerian calculation of internal force, the resultant model is capable of simulating the rapid evolution of geometry of the soil as well as the high-strain-rate soil mechanics of anisotropic materials.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.