Split cross-coupling via Rh-catalysed activation of unstrained aryl–aryl bonds

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Nature Catalysis Pub Date : 2024-03-11 DOI:10.1038/s41929-024-01120-9
Congjun Yu, Zining Zhang, Guangbin Dong
{"title":"Split cross-coupling via Rh-catalysed activation of unstrained aryl–aryl bonds","authors":"Congjun Yu, Zining Zhang, Guangbin Dong","doi":"10.1038/s41929-024-01120-9","DOIUrl":null,"url":null,"abstract":"Constructive functionalization of unstrained aryl–aryl bonds has been a fundamental challenge in organic synthesis due to the inertness of these bonds. Here we report a split cross-coupling strategy that allows twofold arylation with diverse aryl iodides through cleaving unstrained aryl–aryl bonds of common 2,2′-biphenols. The reaction is catalysed by a rhodium complex and promoted by a removable phosphinite directing group and an organic reductant such as tetrakis(dimethylamino)ethylene. The combined experimental and computational mechanistic studies reveal a turnover-limiting reductive elimination step that can be accelerated by a Lewis acid co-catalyst. The utility of this coupling method has been illustrated in the modular and simplified syntheses of unsymmetrical 2,6-diarylated phenols and skeletal insertion of phenylene units. Unstrained aryl–aryl bonds are among the most inert bonds in organic chemistry. Now the development of a split cross-coupling strategy enables the direct functionalization of such bonds through Rh-catalysed C–C cleavage and cross-coupling with aryl halides, providing a method for biaryl synthesis.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":null,"pages":null},"PeriodicalIF":42.8000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01120-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Constructive functionalization of unstrained aryl–aryl bonds has been a fundamental challenge in organic synthesis due to the inertness of these bonds. Here we report a split cross-coupling strategy that allows twofold arylation with diverse aryl iodides through cleaving unstrained aryl–aryl bonds of common 2,2′-biphenols. The reaction is catalysed by a rhodium complex and promoted by a removable phosphinite directing group and an organic reductant such as tetrakis(dimethylamino)ethylene. The combined experimental and computational mechanistic studies reveal a turnover-limiting reductive elimination step that can be accelerated by a Lewis acid co-catalyst. The utility of this coupling method has been illustrated in the modular and simplified syntheses of unsymmetrical 2,6-diarylated phenols and skeletal insertion of phenylene units. Unstrained aryl–aryl bonds are among the most inert bonds in organic chemistry. Now the development of a split cross-coupling strategy enables the direct functionalization of such bonds through Rh-catalysed C–C cleavage and cross-coupling with aryl halides, providing a method for biaryl synthesis.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 Rh 催化活化未受约束的芳基芳烷基键进行拆分交叉耦合
由于未受约束的芳基-芳烷基键的惰性,这些键的建设性官能化一直是有机合成中的一个基本挑战。在此,我们报告了一种拆分交叉偶联策略,该策略通过裂解常见 2,2′-联酚的非受约束芳基-芳基键,实现了与不同芳基碘化物的两重芳基化。该反应由铑络合物催化,并由可移动的膦引导基团和有机还原剂(如四(二甲基氨基)乙烯)促进。结合实验和计算机理研究发现,路易斯酸助催化剂可以加速限制周转的还原消除步骤。这种偶联方法在非对称 2,6-二芳基化苯酚的模块化和简化合成以及亚苯基单元的骨架插入中得到了应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
期刊最新文献
Eliminating redox-mediated electron transfer mechanisms on a supported molecular catalyst enables CO2 conversion to ethanol Enantioselective Chan–Lam S-arylation of sulfenamides The structural basis of pyridoxal-5′-phosphate-dependent β-NAD-alkylating enzymes Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states Understanding the interplay between electrocatalytic C(sp3)‒C(sp3) fragmentation and oxygenation reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1