Pub Date : 2024-11-15DOI: 10.1038/s41929-024-01250-0
Wei Jie Teh, Eleonora Romeo, Shibo Xi, Ben Rowley, Francesc Illas, Federico Calle-Vallejo, Boon Siang Yeo
A crucial task towards creating a sustainable chemical industry is the electrification of chemical processes that produce value-added molecules. One such molecule is 1,3-butadiene (1,3-BD), the feedstock used for manufacturing synthetic rubber. 1,3-BD is traditionally derived, as a by-product, during the energy-intensive steam cracking of naphtha to ethylene. Here we introduce an alternative approach to selectively produce 1,3-BD from the electroreduction of acetylene (e-C2H2R). By using a potassium iodide electrolyte, we created Cuδ+–Cu0 sites on a Cu2O-nanocube-derived catalyst, which are efficacious for promoting e-C2H2R to 1,3-BD. 1,3-BD was formed with a Faradaic efficiency reaching 93% at −0.85 V versus standard hydrogen electrode (SHE) and a partial current density of −75 mA cm−2 at −1.0 V versus SHE. Density functional theory calculations show that I− preserves Cuδ+–Cu0 sites, which facilitate the favourable binding of acetylene, leading to 1,3-BD formation through the coupling of *C2H3 moieties.
{"title":"Selective electroreduction of acetylene to 1,3-butadiene on iodide-induced Cuδ+–Cu0 sites","authors":"Wei Jie Teh, Eleonora Romeo, Shibo Xi, Ben Rowley, Francesc Illas, Federico Calle-Vallejo, Boon Siang Yeo","doi":"10.1038/s41929-024-01250-0","DOIUrl":"https://doi.org/10.1038/s41929-024-01250-0","url":null,"abstract":"<p>A crucial task towards creating a sustainable chemical industry is the electrification of chemical processes that produce value-added molecules. One such molecule is 1,3-butadiene (1,3-BD), the feedstock used for manufacturing synthetic rubber. 1,3-BD is traditionally derived, as a by-product, during the energy-intensive steam cracking of naphtha to ethylene. Here we introduce an alternative approach to selectively produce 1,3-BD from the electroreduction of acetylene (e-C<sub>2</sub>H<sub>2</sub>R). By using a potassium iodide electrolyte, we created Cu<sup>δ+</sup>–Cu<sup>0</sup> sites on a Cu<sub>2</sub>O-nanocube-derived catalyst, which are efficacious for promoting e-C<sub>2</sub>H<sub>2</sub>R to 1,3-BD. 1,3-BD was formed with a Faradaic efficiency reaching 93% at −0.85 V versus standard hydrogen electrode (SHE) and a partial current density of −75 mA cm<sup>−2</sup> at −1.0 V versus SHE. Density functional theory calculations show that I<sup>−</sup> preserves Cu<sup>δ+</sup>–Cu<sup>0</sup> sites, which facilitate the favourable binding of acetylene, leading to 1,3-BD formation through the coupling of *C<sub>2</sub>H<sub>3</sub> moieties.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"246 1","pages":""},"PeriodicalIF":37.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1038/s41929-024-01226-0
Estíbaliz Merino
Typically, active acyl intermediates are quenched with nucleophiles to complete carbonylation. Now, a visible-light-induced radical relay enables CO insertion and selective (hetero)aryl group migration without nucleophiles.
通常情况下,活性酰基中间体会被亲核物淬灭以完成羰基化。现在,一种由可见光诱导的自由基中继技术无需亲核剂即可实现 CO 插入和选择性(杂)芳基迁移。
{"title":"Synergistic role for CO","authors":"Estíbaliz Merino","doi":"10.1038/s41929-024-01226-0","DOIUrl":"10.1038/s41929-024-01226-0","url":null,"abstract":"Typically, active acyl intermediates are quenched with nucleophiles to complete carbonylation. Now, a visible-light-induced radical relay enables CO insertion and selective (hetero)aryl group migration without nucleophiles.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 10","pages":"1058-1059"},"PeriodicalIF":42.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1038/s41929-024-01246-w
Davide Esposito
{"title":"Blowing in the tube","authors":"Davide Esposito","doi":"10.1038/s41929-024-01246-w","DOIUrl":"10.1038/s41929-024-01246-w","url":null,"abstract":"","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 10","pages":"1053-1053"},"PeriodicalIF":42.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1038/s41929-024-01235-z
Sukriyo Chakraborty, Akkattu T. Biju
Thiamine, a common enzymatic cofactor, catalyses the benzoin condensation. From 1943, a panoply of mechanistic proposals were invoked to explain the intriguing transformation until two seminal papers by Ronald Breslow about 15 years after the discovery of this reaction helped resolve the mechanistic conundrum and heralded the birth of NHC-organocatalysis.
{"title":"Birth of organocatalysis by N-heterocyclic carbenes","authors":"Sukriyo Chakraborty, Akkattu T. Biju","doi":"10.1038/s41929-024-01235-z","DOIUrl":"10.1038/s41929-024-01235-z","url":null,"abstract":"Thiamine, a common enzymatic cofactor, catalyses the benzoin condensation. From 1943, a panoply of mechanistic proposals were invoked to explain the intriguing transformation until two seminal papers by Ronald Breslow about 15 years after the discovery of this reaction helped resolve the mechanistic conundrum and heralded the birth of NHC-organocatalysis.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 10","pages":"1060-1062"},"PeriodicalIF":42.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1038/s41929-024-01228-y
The performance of the electrochemical CO2 and CO reduction reactions is affected by the presence of alkali metal cations in the electrolyte, but the mechanism remains under debate. Now, experimental determination of the energetics and kinetic barriers of key elementary steps in the electrochemical CO reduction reaction on Cu enables deconvolution of the cation effect.
电化学二氧化碳和一氧化碳还原反应的性能受到电解液中碱金属阳离子存在的影响,但其机理仍存在争议。现在,通过实验确定了铜上电化学 CO 还原反应中关键基本步骤的能量和动力学障碍,从而得以解构阳离子效应。
{"title":"Deconvoluting the cation effect on carbon monoxide electroreduction","authors":"","doi":"10.1038/s41929-024-01228-y","DOIUrl":"10.1038/s41929-024-01228-y","url":null,"abstract":"The performance of the electrochemical CO2 and CO reduction reactions is affected by the presence of alkali metal cations in the electrolyte, but the mechanism remains under debate. Now, experimental determination of the energetics and kinetic barriers of key elementary steps in the electrochemical CO reduction reaction on Cu enables deconvolution of the cation effect.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 10","pages":"1063-1064"},"PeriodicalIF":42.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1038/s41929-024-01230-4
Tianran Deng, Xiang-Lei Han, Yang Yu, Cheng Cheng, Xiangyuan Liu, Yuhong Gao, Keqiang Wu, Zhenghua Li, Jisheng Luo, Li Deng
Catalytic enantioselective α-C–H functionalization of widely available achiral alkyl amines could provide an ideal synthetic approach towards chiral amines. However, the inert nature of the α-C–H of alkyl amines renders their activation as carbanionic nucleophiles for catalytic asymmetric reactions an important yet unmet challenge. Here we describe how N-arylidene-protected alkyl amines could be activated as carbanions for asymmetric conjugate addition and the Mannich reaction. These results represent an intriguing and generally useful approach to the synthesis of chiral α,α-dialkyl amines. More importantly, they highlight the enormous potential of N-arylidene-protected amines as readily available and widely applicable synthons for the asymmetric synthesis of chiral amines. The catalytic activation of alkyl amines as α-nitrogen carbanions is challenging. Now the activation of N-arylidene-protected alkyl amines as carbanions by chiral ammonium organocatalysis for asymmetric conjugate addition and the Mannich reaction is reported, affording chiral α,α-dialkyl amines.
{"title":"Organocatalytic asymmetric α-C–H functionalization of alkyl amines","authors":"Tianran Deng, Xiang-Lei Han, Yang Yu, Cheng Cheng, Xiangyuan Liu, Yuhong Gao, Keqiang Wu, Zhenghua Li, Jisheng Luo, Li Deng","doi":"10.1038/s41929-024-01230-4","DOIUrl":"10.1038/s41929-024-01230-4","url":null,"abstract":"Catalytic enantioselective α-C–H functionalization of widely available achiral alkyl amines could provide an ideal synthetic approach towards chiral amines. However, the inert nature of the α-C–H of alkyl amines renders their activation as carbanionic nucleophiles for catalytic asymmetric reactions an important yet unmet challenge. Here we describe how N-arylidene-protected alkyl amines could be activated as carbanions for asymmetric conjugate addition and the Mannich reaction. These results represent an intriguing and generally useful approach to the synthesis of chiral α,α-dialkyl amines. More importantly, they highlight the enormous potential of N-arylidene-protected amines as readily available and widely applicable synthons for the asymmetric synthesis of chiral amines. The catalytic activation of alkyl amines as α-nitrogen carbanions is challenging. Now the activation of N-arylidene-protected alkyl amines as carbanions by chiral ammonium organocatalysis for asymmetric conjugate addition and the Mannich reaction is reported, affording chiral α,α-dialkyl amines.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 10","pages":"1076-1085"},"PeriodicalIF":42.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}