Acetyl-CoA carboxylase obstructs CD8+ T cell lipid utilization in the tumor microenvironment.

Cell metabolism Pub Date : 2024-05-07 Epub Date: 2024-03-14 DOI:10.1016/j.cmet.2024.02.009
Elizabeth G Hunt, Katie E Hurst, Brian P Riesenberg, Andrew S Kennedy, Evelyn J Gandy, Alex M Andrews, Coral Del Mar Alicea Pauneto, Lauren E Ball, Emily D Wallace, Peng Gao, Jeremy Meier, John J Serody, Michael F Coleman, Jessica E Thaxton
{"title":"Acetyl-CoA carboxylase obstructs CD8<sup>+</sup> T cell lipid utilization in the tumor microenvironment.","authors":"Elizabeth G Hunt, Katie E Hurst, Brian P Riesenberg, Andrew S Kennedy, Evelyn J Gandy, Alex M Andrews, Coral Del Mar Alicea Pauneto, Lauren E Ball, Emily D Wallace, Peng Gao, Jeremy Meier, John J Serody, Michael F Coleman, Jessica E Thaxton","doi":"10.1016/j.cmet.2024.02.009","DOIUrl":null,"url":null,"abstract":"<p><p>The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"969-983.e10"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.02.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乙酰-CoA羧化酶阻碍 CD8+ T 细胞在肿瘤微环境中利用脂质
实体瘤微环境(TME)会使肿瘤浸润 T 细胞(TILs)的代谢状态受损,其特点是无法维持有效的能量合成以发挥抗肿瘤功能并维持存活。TME中的T细胞必须通过线粒体脂肪酸氧化(FAO)分解脂质,以在营养压力下提供能量,而且已经证实富含FAO的T细胞善于控制癌症。然而,内源性 TIL 和未经修饰的细胞治疗产品无法维持肿瘤中的生物能。我们发现,固态 TME 强加了乙酰辅酶 A(CoA)羧化酶(ACC)的永久活性,导致 TIL 中的脂质生物生成和储存与 FAO 相反。利用代谢、脂质组学和共聚焦成像策略,我们发现限制乙酰辅酶A重新改写了T细胞的新陈代谢,从而在TME压力下维持能量。限制胆碱酯酶的活性会增强表明 T 细胞长寿的基因和表型程序,使 T 细胞具有更高的存活率和多功能性,从而维持对癌症的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cytosolic calcium regulates hepatic mitochondrial oxidation, intrahepatic lipolysis, and gluconeogenesis via CAMKII activation. Obesity intensifies sex-specific interferon signaling to selectively worsen central nervous system autoimmunity in females. Serine and glycine physiology reversibly modulate retinal and peripheral nerve function. TNF compromises intestinal bile-acid tolerance dictating colitis progression and limited infliximab response. Acetate enables metabolic fitness and cognitive performance during sleep disruption.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1