Picking of weak signal in seismic exploration of non-coal solid mines based on phase-locked technology

Lian Jiang , Quanfeng Wang , Congyu Wang , Huan Cao , Yongfa Wang , Jingxin Wu , Bin Xu
{"title":"Picking of weak signal in seismic exploration of non-coal solid mines based on phase-locked technology","authors":"Lian Jiang ,&nbsp;Quanfeng Wang ,&nbsp;Congyu Wang ,&nbsp;Huan Cao ,&nbsp;Yongfa Wang ,&nbsp;Jingxin Wu ,&nbsp;Bin Xu","doi":"10.1016/j.oreoa.2024.100042","DOIUrl":null,"url":null,"abstract":"<div><p>The exploration and development of mineral resources are of crucial significance to national economy, people's livelihood and national security. Therefore, in order to extract the weak signal in seismic exploration of non-coal solid mines in shallow surface layer to achieve high-resolution exploration, the mathematical model and physical model of multiplier are established by referring to the frequency point acquisition technology in wireless radar communication, that is, phase-locked technology. The weak effective seismic signals of different frequency points are picked out from the collected 120 dB dynamic range spectrum, and the information of stratigraphic structure under high noise background is obtained more effectively by using mixing detection and two-phase demodulation technology in the harmonic component spectrum, thereby improving the high resolution and high precision of mineral exploration. The lock-in amplifier is added to the front stage of the seismograph to obtain the effective seismic wave reflected by the wave impedance interface required in the exploration task. Experimental results show that this method significantly improves the SNR and protects the weak effective signal from loss. It adds new technology and method to seismic signal acquisition and processing, and provides a new way to obtain high-quality seismic data in the field of mineral geophysical exploration, and will be widely used after being promoted in the fields of mineral exploration, geological disaster prediction, military geophysics, and archaeology.</p></div>","PeriodicalId":100993,"journal":{"name":"Ore and Energy Resource Geology","volume":"16 ","pages":"Article 100042"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore and Energy Resource Geology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266626122400004X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The exploration and development of mineral resources are of crucial significance to national economy, people's livelihood and national security. Therefore, in order to extract the weak signal in seismic exploration of non-coal solid mines in shallow surface layer to achieve high-resolution exploration, the mathematical model and physical model of multiplier are established by referring to the frequency point acquisition technology in wireless radar communication, that is, phase-locked technology. The weak effective seismic signals of different frequency points are picked out from the collected 120 dB dynamic range spectrum, and the information of stratigraphic structure under high noise background is obtained more effectively by using mixing detection and two-phase demodulation technology in the harmonic component spectrum, thereby improving the high resolution and high precision of mineral exploration. The lock-in amplifier is added to the front stage of the seismograph to obtain the effective seismic wave reflected by the wave impedance interface required in the exploration task. Experimental results show that this method significantly improves the SNR and protects the weak effective signal from loss. It adds new technology and method to seismic signal acquisition and processing, and provides a new way to obtain high-quality seismic data in the field of mineral geophysical exploration, and will be widely used after being promoted in the fields of mineral exploration, geological disaster prediction, military geophysics, and archaeology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于锁相技术的非煤固体矿山地震勘探中的微弱信号采集
矿产资源的勘探与开发对国民经济、国计民生和国家安全具有至关重要的意义。因此,为了提取浅表层非煤固体矿山地震勘探中的微弱信号,实现高分辨率勘探,参照无线雷达通信中的频点采集技术,即锁相技术,建立了倍增器的数学模型和物理模型。从采集到的 120 dB 动态范围频谱中挑出不同频点的微弱有效地震信号,在谐波分量频谱中采用混频检波和两相解调技术,更有效地获取高噪声背景下的地层结构信息,从而提高矿产勘探的高分辨率和高精度。在地震仪前级增加锁相放大器,可获得勘探任务所需的波阻抗界面反射的有效地震波。实验结果表明,该方法显著提高了信噪比,保护了微弱的有效信号不丢失。它为地震信号采集和处理增添了新的技术和方法,为矿产地球物理勘探领域获取高质量地震数据提供了新途径,推广后将在矿产勘探、地质灾害预测、军事地球物理、考古等领域得到广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geochemistry of the sandstone of Mallawa Formation in the Southern arm of Sulawesi, Indonesia: Implications for provenance and tectonic setting Comparative analysis of Na+ and Ca2+ ion effects on the physical-chemical properties of Bentonite: Implications for industrial applications Integrated geomechanical analysis of shear failure wellbore instability in abnormal and normal pore pressure zones using diverse input data: A case study Multispectral remote sensing expression of lineaments and alteration minerals in part of crystalline rock units of Southwestern Nigeria: Implication on gold prospecting Mapping iron oxides with Landsat-8/OLI imagery from iron ore deposit in Singhbhum craton, eastern India: Its implication to mineral exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1