{"title":"Magnetic flux trapping in porous high-Tc superconductors","authors":"Denis Gokhfeld","doi":"10.1016/j.physc.2024.1354486","DOIUrl":null,"url":null,"abstract":"<div><p>Porosity affects the properties of high-<em>T<sub>c</sub></em> superconductors and can improve their performance by enhancing oxygenation, cryocooling, etc. Among other factors, the presence of pores plays a significant role in the process of magnetic flux trapping. Relationships with the porosity manifest in the irreversibility field, the full penetration field, and the remnant magnetization of the samples. To account for the effect of porosity on the trapped magnetic flux into type-II superconductors, a simple toy model is suggested. Generally, as the porosity increases, the trapped flux and related parameters tend to diminish. However, in the case of microscopic samples, porosity can enhance magnetic flux trapping.</p></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"619 ","pages":"Article 1354486"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453424000510","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Porosity affects the properties of high-Tc superconductors and can improve their performance by enhancing oxygenation, cryocooling, etc. Among other factors, the presence of pores plays a significant role in the process of magnetic flux trapping. Relationships with the porosity manifest in the irreversibility field, the full penetration field, and the remnant magnetization of the samples. To account for the effect of porosity on the trapped magnetic flux into type-II superconductors, a simple toy model is suggested. Generally, as the porosity increases, the trapped flux and related parameters tend to diminish. However, in the case of microscopic samples, porosity can enhance magnetic flux trapping.
孔隙率会影响高锝超导体的特性,并能通过增强氧合、低温冷却等方式提高其性能。除其他因素外,孔隙的存在在磁通捕获过程中起着重要作用。样品的不可逆磁场、全穿透磁场和残余磁化都与孔隙率有关。为了解释孔隙率对进入 II 型超导体的磁通量捕获的影响,我们提出了一个简单的玩具模型。一般来说,随着孔隙率的增加,捕获磁通量和相关参数趋于减小。然而,在微观样品中,孔隙率会增强磁通捕获。
期刊介绍:
Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity.
The main goal of the journal is to publish:
1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods.
2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance.
3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices.
The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.