Marina Martínez-Álvaro, Jennifer Mattock, Óscar González-Recio, Alejandro Saborío-Montero, Ziqing Weng, Joana Lima, Carol-Anne Duthie, Richard Dewhurst, Matthew A. Cleveland, Mick Watson, Rainer Roehe
{"title":"Including microbiome information in a multi-trait genomic evaluation: a case study on longitudinal growth performance in beef cattle","authors":"Marina Martínez-Álvaro, Jennifer Mattock, Óscar González-Recio, Alejandro Saborío-Montero, Ziqing Weng, Joana Lima, Carol-Anne Duthie, Richard Dewhurst, Matthew A. Cleveland, Mick Watson, Rainer Roehe","doi":"10.1186/s12711-024-00887-6","DOIUrl":null,"url":null,"abstract":"Growth rate is an important component of feed conversion efficiency in cattle and varies across the different stages of the finishing period. The metabolic effect of the rumen microbiome is essential for cattle growth, and investigating the genomic and microbial factors that underlie this temporal variation can help maximize feed conversion efficiency at each growth stage. By analysing longitudinal body weights during the finishing period and genomic and metagenomic data from 359 beef cattle, our study demonstrates that the influence of the host genome on the functional rumen microbiome contributes to the temporal variation in average daily gain (ADG) in different months (ADG1, ADG2, ADG3, ADG4). Five hundred and thirty-three additive log-ratio transformed microbial genes (alr-MG) had non-zero genomic correlations (rg) with at least one ADG-trait (ranging from |0.21| to |0.42|). Only a few alr-MG correlated with more than one ADG-trait, which suggests that a differential host-microbiome determinism underlies ADG at different stages. These alr-MG were involved in ribosomal biosynthesis, energy processes, sulphur and aminoacid metabolism and transport, or lipopolysaccharide signalling, among others. We selected two alternative subsets of 32 alr-MG that had a non-uniform or a uniform rg sign with all the ADG-traits, regardless of the rg magnitude, and used them to develop a microbiome-driven breeding strategy based on alr-MG only, or combined with ADG-traits, which was aimed at shaping the rumen microbiome towards increased ADG at all finishing stages. Combining alr-MG information with ADG records increased prediction accuracy of genomic estimated breeding values (GEBV) by 11 to 22% relative to the direct breeding strategy (using ADG-traits only), whereas using microbiome information, only, achieved lower accuracies (from 7 to 41%). Predicted selection responses varied consistently with accuracies. Restricting alr-MG based on their rg sign (uniform subset) did not yield a gain in the predicted response compared to the non-uniform subset, which is explained by the absence of alr-MG showing non-zero rg at least with more than one of the ADG-traits. Our work sheds light on the role of the microbial metabolism in the growth trajectory of beef cattle at the genomic level and provides insights into the potential benefits of using microbiome information in future genomic breeding programs to accurately estimate GEBV and increase ADG at each finishing stage in beef cattle.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"364 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-024-00887-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Growth rate is an important component of feed conversion efficiency in cattle and varies across the different stages of the finishing period. The metabolic effect of the rumen microbiome is essential for cattle growth, and investigating the genomic and microbial factors that underlie this temporal variation can help maximize feed conversion efficiency at each growth stage. By analysing longitudinal body weights during the finishing period and genomic and metagenomic data from 359 beef cattle, our study demonstrates that the influence of the host genome on the functional rumen microbiome contributes to the temporal variation in average daily gain (ADG) in different months (ADG1, ADG2, ADG3, ADG4). Five hundred and thirty-three additive log-ratio transformed microbial genes (alr-MG) had non-zero genomic correlations (rg) with at least one ADG-trait (ranging from |0.21| to |0.42|). Only a few alr-MG correlated with more than one ADG-trait, which suggests that a differential host-microbiome determinism underlies ADG at different stages. These alr-MG were involved in ribosomal biosynthesis, energy processes, sulphur and aminoacid metabolism and transport, or lipopolysaccharide signalling, among others. We selected two alternative subsets of 32 alr-MG that had a non-uniform or a uniform rg sign with all the ADG-traits, regardless of the rg magnitude, and used them to develop a microbiome-driven breeding strategy based on alr-MG only, or combined with ADG-traits, which was aimed at shaping the rumen microbiome towards increased ADG at all finishing stages. Combining alr-MG information with ADG records increased prediction accuracy of genomic estimated breeding values (GEBV) by 11 to 22% relative to the direct breeding strategy (using ADG-traits only), whereas using microbiome information, only, achieved lower accuracies (from 7 to 41%). Predicted selection responses varied consistently with accuracies. Restricting alr-MG based on their rg sign (uniform subset) did not yield a gain in the predicted response compared to the non-uniform subset, which is explained by the absence of alr-MG showing non-zero rg at least with more than one of the ADG-traits. Our work sheds light on the role of the microbial metabolism in the growth trajectory of beef cattle at the genomic level and provides insights into the potential benefits of using microbiome information in future genomic breeding programs to accurately estimate GEBV and increase ADG at each finishing stage in beef cattle.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.