Genetic parameters and parental and early-life effects of boar semen traits

IF 3.6 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Genetics Selection Evolution Pub Date : 2025-02-06 DOI:10.1186/s12711-025-00954-6
Pedro Sá, Rodrigo M. Godinho, Marta Gòdia, Claudia A. Sevillano, Barbara Harlizius, Ole Madsen, Henk Bovenhuis
{"title":"Genetic parameters and parental and early-life effects of boar semen traits","authors":"Pedro Sá, Rodrigo M. Godinho, Marta Gòdia, Claudia A. Sevillano, Barbara Harlizius, Ole Madsen, Henk Bovenhuis","doi":"10.1186/s12711-025-00954-6","DOIUrl":null,"url":null,"abstract":"The objectives of this study were to estimate genetic parameters and studying the influence of early-life and parental factors on the semen traits of boars. The dataset included measurements on 449,966 ejaculates evaluated using a Computer-Assisted Sperm Analysis (CASA) system from 5692 artificial insemination (AI) boars. In total, we considered 16 semen traits measured on fresh semen and 6 sperm motility traits measured on semen after storage. Early-life effects included the dam’s parity, ages of the dam and sire, gestation length, litter size, litter sex ratio, number of piglets born alive, number of litter mates at weaning, rearing length, and weight gain. A repeatability model accounting for effects at collection was used to (1) estimate heritabilities and repeatabilities for semen traits and genetic and phenotypic correlations between traits, (2) test the significance of early-life effects, (3) quantify the contribution of exclusive dam and sire inheritances to the phenotypic variation, i.e., mitochondrial DNA and the Y chromosome, identified using a pedigree-based approach, and (4) quantify the contribution of maternal and paternal environment effects to the phenotypic variation of semen traits. We reported heritabilities between 0.11 and 0.27 and repeatabilities between 0.20 and 0.65 for semen traits. Semen quality traits showed a skewed distribution, and their transformation significantly reduced their repeatability estimates. Motility traits measured after storage were genetically different from motility traits measured on fresh semen. Early-life had suggestive effects on a limited number of semen traits. Mitochondrial DNA and the Y chromosome did not explain a discerning proportion of the phenotypic variance and the effect of the paternal environment was also negligible. We estimated a significant maternal environment effect predominantly on sperm motility traits, explaining between 2.3 and 4.6% of the phenotypic variance. Including maternal environmental effects in the model reduced heritability estimates for sperm motility traits and total morphological abnormalities. Our findings indicate that trait transformation has a large effect on repeatability estimates of semen traits. Sperm motility traits measured on fresh semen are genetically different from sperm motility traits measured after storage. Early-life conditions can have an effect on later semen quantity and quality traits. Mitochondrial DNA and Y chromosome inheritances showed no effect on semen traits. Finally, we emphasize the importance of considering maternal effects when analysing semen traits, which results in lower heritability estimates.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"9 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-025-00954-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The objectives of this study were to estimate genetic parameters and studying the influence of early-life and parental factors on the semen traits of boars. The dataset included measurements on 449,966 ejaculates evaluated using a Computer-Assisted Sperm Analysis (CASA) system from 5692 artificial insemination (AI) boars. In total, we considered 16 semen traits measured on fresh semen and 6 sperm motility traits measured on semen after storage. Early-life effects included the dam’s parity, ages of the dam and sire, gestation length, litter size, litter sex ratio, number of piglets born alive, number of litter mates at weaning, rearing length, and weight gain. A repeatability model accounting for effects at collection was used to (1) estimate heritabilities and repeatabilities for semen traits and genetic and phenotypic correlations between traits, (2) test the significance of early-life effects, (3) quantify the contribution of exclusive dam and sire inheritances to the phenotypic variation, i.e., mitochondrial DNA and the Y chromosome, identified using a pedigree-based approach, and (4) quantify the contribution of maternal and paternal environment effects to the phenotypic variation of semen traits. We reported heritabilities between 0.11 and 0.27 and repeatabilities between 0.20 and 0.65 for semen traits. Semen quality traits showed a skewed distribution, and their transformation significantly reduced their repeatability estimates. Motility traits measured after storage were genetically different from motility traits measured on fresh semen. Early-life had suggestive effects on a limited number of semen traits. Mitochondrial DNA and the Y chromosome did not explain a discerning proportion of the phenotypic variance and the effect of the paternal environment was also negligible. We estimated a significant maternal environment effect predominantly on sperm motility traits, explaining between 2.3 and 4.6% of the phenotypic variance. Including maternal environmental effects in the model reduced heritability estimates for sperm motility traits and total morphological abnormalities. Our findings indicate that trait transformation has a large effect on repeatability estimates of semen traits. Sperm motility traits measured on fresh semen are genetically different from sperm motility traits measured after storage. Early-life conditions can have an effect on later semen quantity and quality traits. Mitochondrial DNA and Y chromosome inheritances showed no effect on semen traits. Finally, we emphasize the importance of considering maternal effects when analysing semen traits, which results in lower heritability estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本研究的目的是估算遗传参数,并研究早期生活和父母因素对公猪精液性状的影响。数据集包括使用计算机辅助精子分析(CASA)系统对5692头人工授精(AI)公猪的449 966次射精进行的测量。我们总共考虑了对新鲜精液测量的 16 个精液性状和对储存后精液测量的 6 个精子活力性状。早期生活的影响包括母猪的奇偶性、母猪和公猪的年龄、妊娠期长短、窝产仔数、窝产仔性别比、活产仔数、断奶时窝产仔数、饲养期长短和增重。采用重复性模型(考虑采集时的影响):(1)估计精液性状的遗传力和重复性,以及性状之间的遗传和表型相关性;(2)检验早期生活影响的显著性;(3)量化母系和父系遗传对表型变异的贡献,即线粒体 DNA 和基因突变、(4) 量化母系和父系环境对精液性状表型变异的影响。我们发现精液性状的遗传率介于 0.11 和 0.27 之间,重复率介于 0.20 和 0.65 之间。精液质量性状呈偏斜分布,其转化显著降低了重复性估计值。贮藏后测定的精子活力性状与新鲜精液测定的精子活力性状存在遗传差异。早期生活对少数精液性状有提示性影响。线粒体 DNA 和 Y 染色体无法解释表型变异的明显比例,父系环境的影响也可以忽略不计。我们估计母源环境对精子活力性状的影响很大,可解释表型变异的 2.3% 到 4.6%。在模型中加入母源环境效应会降低精子活力性状和总形态异常的遗传率估计值。我们的研究结果表明,性状转化对精液性状的可重复性估计值有很大影响。在新鲜精液中测定的精子活力性状与贮存后测定的精子活力性状在遗传学上是不同的。早期生活条件会对后期精液数量和质量性状产生影响。线粒体 DNA 和 Y 染色体遗传对精液性状没有影响。最后,我们强调在分析精液性状时考虑母本效应的重要性,这将导致较低的遗传率估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genetics Selection Evolution
Genetics Selection Evolution 生物-奶制品与动物科学
CiteScore
6.50
自引率
9.80%
发文量
74
审稿时长
1 months
期刊介绍: Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.
期刊最新文献
Is there an advantage of using genomic information to estimate gametic variances and improve recurrent selection in animal populations? Genetic parameters and parental and early-life effects of boar semen traits Sequence-based GWAS in 180,000 German Holstein cattle reveals new candidate variants for milk production traits Genomic selection strategies to overcome genotype by environment interactions in biosecurity-based aquaculture breeding programs Genetic inbreeding load and its individual prediction for milk yield in French dairy sheep
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1