Updates to the Melbourne Children's Regional Infant Brain Software Package (M-CRIB-S).

IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Neuroinformatics Pub Date : 2024-04-01 Epub Date: 2024-03-16 DOI:10.1007/s12021-024-09656-8
Chris L Adamson, Bonnie Alexander, Claire E Kelly, Gareth Ball, Richard Beare, Jeanie L Y Cheong, Alicia J Spittle, Lex W Doyle, Peter J Anderson, Marc L Seal, Deanne K Thompson
{"title":"Updates to the Melbourne Children's Regional Infant Brain Software Package (M-CRIB-S).","authors":"Chris L Adamson, Bonnie Alexander, Claire E Kelly, Gareth Ball, Richard Beare, Jeanie L Y Cheong, Alicia J Spittle, Lex W Doyle, Peter J Anderson, Marc L Seal, Deanne K Thompson","doi":"10.1007/s12021-024-09656-8","DOIUrl":null,"url":null,"abstract":"<p><p>The delineation of cortical areas on magnetic resonance images (MRI) is important for understanding the complexities of the developing human brain. The previous version of the Melbourne Children's Regional Infant Brain (M-CRIB-S) (Adamson et al. Scientific Reports, 10(1), 10, 2020) is a software package that performs whole-brain segmentation, cortical surface extraction and parcellation of the neonatal brain. Available cortical parcellation schemes in the M-CRIB-S are the adult-compatible 34- and 31-region per hemisphere Desikan-Killiany (DK) and Desikan-Killiany-Tourville (DKT), respectively. We present a major update to the software package which achieves two aims: 1) to make the voxel-based segmentation outputs derived from the Freesurfer-compatible M-CRIB scheme, and 2) to improve the accuracy of whole-brain segmentation and cortical surface extraction. Cortical surface extraction has been improved with additional steps to improve penetration of the inner surface into thin gyri. The improved cortical surface extraction is shown to increase the robustness of measures such as surface area, cortical thickness, and cortical volume.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021251/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-024-09656-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The delineation of cortical areas on magnetic resonance images (MRI) is important for understanding the complexities of the developing human brain. The previous version of the Melbourne Children's Regional Infant Brain (M-CRIB-S) (Adamson et al. Scientific Reports, 10(1), 10, 2020) is a software package that performs whole-brain segmentation, cortical surface extraction and parcellation of the neonatal brain. Available cortical parcellation schemes in the M-CRIB-S are the adult-compatible 34- and 31-region per hemisphere Desikan-Killiany (DK) and Desikan-Killiany-Tourville (DKT), respectively. We present a major update to the software package which achieves two aims: 1) to make the voxel-based segmentation outputs derived from the Freesurfer-compatible M-CRIB scheme, and 2) to improve the accuracy of whole-brain segmentation and cortical surface extraction. Cortical surface extraction has been improved with additional steps to improve penetration of the inner surface into thin gyri. The improved cortical surface extraction is shown to increase the robustness of measures such as surface area, cortical thickness, and cortical volume.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
更新墨尔本儿童地区婴儿脑软件包(M-CRIB-S)。
磁共振成像(MRI)上皮层区域的划分对于了解人类大脑发育的复杂性非常重要。墨尔本儿童区域婴儿脑(M-CRIB-S)的前一版本(Adamson 等人,《科学报告》,10(1), 10, 2020 年)是一个软件包,可对新生儿大脑进行全脑分割、皮质表面提取和划分。M-CRIB-S 中可用的皮层划分方案分别是与成人兼容的每半球 34 个区域的 Desikan-Killiany(DK)方案和每半球 31 个区域的 Desikan-Killiany-Tourville(DKT)方案。我们对软件包进行了重大更新,以实现两个目标:1)使基于体素的分割输出与 Freesurfer 的 M-CRIB 方案兼容;2)提高全脑分割和皮层表面提取的准确性。皮质表面提取已得到改进,增加了额外的步骤,以提高内表面对薄回旋的穿透力。结果表明,改进后的皮质表面提取提高了表面积、皮质厚度和皮质体积等测量指标的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroinformatics
Neuroinformatics 医学-计算机:跨学科应用
CiteScore
6.00
自引率
6.70%
发文量
54
审稿时长
3 months
期刊介绍: Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.
期刊最新文献
Anatomic Interpretability in Neuroimage Deep Learning: Saliency Approaches for Typical Aging and Traumatic Brain Injury. Interdisciplinary and Collaborative Training in Neuroscience: Insights from the Human Brain Project Education Programme. Improved ADHD Diagnosis Using EEG Connectivity and Deep Learning through Combining Pearson Correlation Coefficient and Phase-Locking Value. A Deep Learning-based Pipeline for Segmenting the Cerebral Cortex Laminar Structure in Histology Images. Bridging the Gap: How Neuroinformatics is Preparing the Next Generation of Neuroscience Researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1